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Introduction

THE IDEA TO DESIGN experiments systematically and with a
view to their statistical analysis was first promoted by R. A
Fisher in his well known book “The Design of Experiments™
Fisher also proposed the majority of the designs diseussed in
the present volume. Several designs of great importance, §othbly
the quasifactorial designs and the incomplete balanced bloek
designs, were discovered by F. Yates. R. A. IE‘is]ier’s book,
however, as well as other publications by R.A. Fisher and
F. Yates and their school are not written for wathematicians.
Thus the main emphasis is placed on thQaXpianation of the
procedure with little or no attention b{mg paid to a mathe-
matical formulation of the assumptions.and to the principles of
statistical inference which lead frot’ the assumption to the
statistical method. Moreover, 'alé.b’ in meny other important
papers on analysis of variancetand design of experiments proofs
and derivations of formulagare barely sketched if not totally
omitted. The present hook tries to fill this gap and the main
emphasis is therefore {given to a rigorous mathematical treat-
ment of the subjecti

In writing thig velume the author had in mind a reader with
a mathematigalbackground of a student, who majors in mathe-
maties andisin his senior year. References are given whenever
the text\e:xéeeds this background.

The(bdok is designed to serve three different purposes. First,
it_was intended to enable a mature mathematician with no

) ob@ﬂ\kground in statistics to study the analysis of variance and
Nahalysis of variance designs within s reagonably short time,
Secondly, it is intended to serve as a text book for g graduate
or advanced undergraduate course in the subject. Finally, it is
hoped that this beok will be studied by practical experimenters
and statisticians who wish to study the mathematical methods
used in the analysis of variance and in the construction of
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analysis of variance designs and are willing and able to expend
the time and effort necessary for this purpose.

My thanks are due to the Iowa State College Press for their
kind permission to include in this book the tables of the F-dis-
tribution of G. W, Snedecor’s “Statistical Methods” and to the
Department of Statistios, University of London, University
Collego for their kind permission to republish . (. Tang’s, "
tables of the power function of the analysis of variance test frgm
the second volume of the “Btatistical Research Memoips?y

I am indebted to Mr. Ransom Whitney who has assisted me
in reading the manuseript and the proofs. I also.Wish to ac-
knowledge my indebtedness to Professor W. & ©ochran for
a very helpful letter, 3
K7\
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CHAPTER I

Chi-square Distribution and Analysis of
Variance Distribution

IN THIS CHAPTER cerfain fundamental concepts of the prob-
ability caleulus are used. The reader who is not acquainted with
these conoepts should first acquire the necessary background
by reading, for instance, Uspensky’s, “Introduction to Mathe®
matical Probability,” Chapter XII. Sec. 8, example 3, Chabter
XII1. Secs. 1-4 and 6, Chapter XV, Sees. 1-6. N

Let #, , -+, z» be normally and independently? dmtnbuted
variables with variances 1 and means 0. We WlSh\tO calculate
the distribution of the expression

N

(1.1} X =z +a+ +{M

The joint distribution of z, , - -+ ,Jyis given by the prob-
ability density funetion, ) ,,’; -

P(xl T xN) (2‘”)”‘3 e p[ (3:1 . + x:f)/z.l'
Hence the probabxhty«’l}hat
2\é -+ 2L <R

is given by

0O R |
9\ e x°/2 .
oo L( )J,me dz, dzy

wherg! S s the sphere with radlus R and center 0. The prob-
a.blhl?y ‘that
O B < ¥ < (B + AR)?

is, therefore, given by
C f 3_'?(';2 dxl e d.-":y

R’ < x* < (R + ARy
1
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where (' is a certain constant independent of B. If we denote
the probability that x* < R® by P(x* < R®) we, therefore,
have

APGE <R = Ce™™™% A

where B® < x* < (B 4 AR)® and Av is the volume of the
spherical shell B* < »* < (B + AR)® This volume is given
by av = C'R"'AR. If now AR approaches 0, we obtain

2
dP (' < RH = (1 g FE -1 ‘rr\’:\.’
dR ,”\\ "
f 2 \
Hence since x* > 0 N

2 D
P(x-_' s Rz) = j; o evx'/z xN—L dx::;\

B (N )é'\\;
=], CoO"2EE g
% 3

The probability density of x* is .pﬁefefore,
P = Co)™ A8 fory 2 0

=0 ™ for x* < 0.
The constant ¢ still ?;Ema,m‘s to be determined. We must have
7 (xz)w 242 —x’z’2 d 2 1.

.,\)
O
x:\Qt’

b= i [ ) o)
0

[/

Hence

f___. Ns (N=2)/2 2 _ o N
fo x ¢ dr =2 I‘(-g*),

where

s,/o

/V)m

T = f 27 e da
a
is the well known T funetion,



Hence we finally have

1
1.2 P(x2 . SN 0. S P RN
( . ) ) QWZI'(N/2> (X) e

The number N in this distribution is called the number of
degrees of freedom.

This distribution is tabulated in almost every modern book~
on statistics for all degrees of freedom under 31. For largex
values of N the quantity (2x)! — (@8N — 1)} is approximédtely
normally distributed with mean 0 and variance 1. Fér)large
values of N also (* — N)/(2N)}is apprommately so distributed.

If x} has #n, degrees of freedom and y; has ng degrees of
freedom, then %} , (x3) is distributed as is the sﬁm of 7, , (na)
independently and normally distributed vhtidtes. Hence we
have o\

TueorewM 1.1: Let X1 Y Xas e K x3b€ ! M;apendenﬂy distributed
variables such that x: has the x* dzstnbutwn with n. degrees of
Jreedom then o

L QY

x2=xf-|-ﬁ"5<§+ eyl

has the x° dzsmbuiwn '@th i, + 1, + - 4+ n, = n degrees
of freedom. e g\
\\

All of the theory of analysis and design of experiments which
is presentedjil/this book is based on the distribufion of the
ratio of tworindependent chi-square expressions. We therefore,
proce ?;‘o Gerive thls distribution,

Su{)}s e that x; is dastrxbuted according to 1.2 with », de-
grees of freedom and x3 with n, degrees of freedom and suppose
Vo that Xt and xo are independently distributed. The joint distri-
bu‘mon of %7 and x; is then given by its density function

1
2 (0, /)T () 2)

P(X§ s X:) =

.(xf)(m—ﬂ)aﬂ(xg)(m——mf’z exp [__ (x?i + xi)zz].
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We put

(i.3) =y, xitx=cz

Ll

¥

To every pair of values y > 0, z > 0, there exists one and only
one pair of values x; > 0, & = 0. We, therefore, ebtain the
probability density of y and z by transforming P(xi , x3) by
means of 1.3. From 1.3 we have

[ e 2 y A\ -
3y d2 1+y 1+y . R V)
oy | oz G+ 1+vy m'\"(.’
Hence the probability density of y and z is\given by
_ 1 (ma=2)/2 (z)fn\\a’wg)/z o
AWGu/2)Ta/2) (1 + )™ 2B ‘
A forz> 0,y 0,

and is 0 for either z < 0 ory <0 “

Integrating out with respg(‘,‘b:tb z from ( to =, we obtain the
density function of ¢y

(O p(t ), me =2
(1.4) HEy & — 2 2 o
AN 0, + 1

27 )yt

Henqe\{iﬁ“ﬁrobability that ¥y > § > 0is given by

‘o\ " iy
(1) | 1 ay.
) “\. Y b .
“\"The variab} d i i
) The variable y was eﬁmzd as the quotient of two independont
chi-square eXPIessions x; and x: with n, and n, degrees of
freedom respectively. We shall consider the variable F given by

2
F=?EX__1. ",
z - = .
ﬂ‘J.XB’ ﬂg y

-\
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The probability of obtaining an F larger or equal to F is ac-
cording to 1.5 and 1.4 given by

/ ) H(’ﬂ F) ™ aF
P Na g
«*6 B TS LY. e i
4 I‘(n1/2)l‘(ng/2) (1 e an/nz)iu;+n3)}2
= G :.\’:\\“In
The Values F and F for which A \J
\3

GF) = 05, GF) = 01 \\

have heen tabulated by G. W. Snedecor in hm@e}{s “Statistical
Methods” and ““Amnalysis of Variance an Covarianee,” which
also contain a large collection of mterest{ng applications of the

x° and F statistic. - N\’
O
™
N
N\
AN
N
,
R\
g\' &.:’
A\
LD
‘n\ N/
A/
>
.'\\’s.l
A\
’x‘/
.'\\



" CHAPTER 1IT

Matrices, Quadrasic Forms, and the
Multiveriate Normal Distribution

A MATRIX i5 a rectangular array of coeficients

N\
all e al N &
2 » n p, f\“\
N\ ¥
N
Tmis 'y T M

We shall denote such a matrix by {e,;) wheneve}'.!;lie ﬁ]eaning
of the numbers m and » will be clear from the gentext.
Consider a system of linear forms \4

. _ A\
(2.1) . L,‘ = a5 + e + Xk, , {%\11 Tty .

The matrix (a.;) is called the matrix“e# the linear forms L, in
Z1, *+ , ¥, . Suppose now 1;ha1:,‘13lne~ z; are themselves linear

forms in the variables Yoy o alhe
(2.2) N T
Then O
ne .
n ¢ al\"s' a n
L; = E @i ?‘2 Z @by = E Y Z @by
i=1 PR SN k=1 i=1
PN
7l =1, m
The L‘,-\éa;}{i;herefore linear forms in the variables Ui, <0, 4

mthb& matrix {c;,) where

\Y
NS

n
O :
\\"' Cek=;:an‘b;k, %=1,"-,m,k=1,---,8.
) =1 :

. L is therefore natural to define the produet of two matrices
y .

(2.3) . (@i} (bse) = ( i a,-;bfk).

i=1

6
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Note that the product is only defined if (a,;) has as many
columns as (b;,) has rows. :

If we put
I, z
Iy =1 (@) = .
L. n
wwe may rewrite (2.1) in matrix form as ) \ ‘\

(24) (L) = (@:;)().

To a limited extent matrix notation and somé’;bf the most
clementary theorems on matrices will be used*m this book.
If she reader is not familiar with the mostﬁ&é‘me’ntary aspects
of the theory of matrices, he should/aequire the necessary
baskground by reading, for instance] il A. A. Albert’s book
“Tntroduction 1o Algebraic _«Eheories” Chapter 2 and
Chapter 3, Section 1 to 11. Albert’s book will be referred to
as {AAA). We chall reviewjifiefe gsome elementary theorems
which will be used in thischapter.

The multiplication of\matrices is associative {AAA III. 2)
That is to say, if &k\B’ ¢ are matrices such that (AB) and
{BC) are defined then

(2.5) (AB)C = A(BO).

MY
o
£ "\s v
The \ﬁu‘ltiplication of matrices is not commutative. That
meangsithat AB is not always the same as BA. In fact AB may be
defined whilst BA is not.

\_The determinant of a square matrix (a,;) = A will be denoted

by | ay; | or | A |. The equation

(2.6) |AB| = [Al[|B]|
holds (AAA, 1T, 5).
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The matrix
0-..0
0r..-0
2.9 sl =1
0.1

is called the unit matrix and it is easy to verify that &)=
14 = A forevery A for which IA and Al are deﬁned.;;’\;
If and only if | 4 | # 0 then A is called non singular and
Possesses an inverse A" for which (AAA, IIT, 6). o0
‘&

: a\ N
(2.8) AT = A4 = T,

We shall always use the notation (cr.-,-)’?j‘\\-'—’ (c'").
To every matrix {a:;) = 4 we can ednstruct the transposed

matrix A’ by interchanging rows/and columns, One easily
verifies the laws \

R
3

(29 (ABY = BA, B = Bu= 4y — 4t

The symbol A’ will ba reserved in this book for the trans.
posed of A. A

»0\"‘/

\ }

We consider qu%{‘aﬁc forms
(2.10) ?,T-r Zﬂl g T, Gy = oy
We ngaéw};ite Q in matrix form
CRT AN @ = o'Aq,
where
E5
A = (a,), T =
Xn

4 is called the matrix of @ in the varisbles z, |

N



Suppose that

i
Pu "t Trim .
z = Py, P = + b=
pnl v pnmJ
ym
Then
(2.12) Q = o'Az = yP'APYy.
Hence the matrix of @ in terms of the variables yff; s
Y is given by P'AP. D
A guadratic form in x; , - , . i8 cailed positive definite if
it takes only positive values when the variables Ty, rr g Za,

take real values not all equal to 0. If i@j@éﬂed semi-definite
when it takes only non negative valyes\(Dositive and 0) for
veal 2z, , <+, 7. . Any quadratic formi\ay, by a non singular
transformation (AAA, IIT, 11} &3 -

o g
*

7 4
&

n . "
Li= 2 com gty t=1,-,n,

F

he transformed into {»"\\

L
Q=22 cLi, r=<n c#0
oy Nir=1
The numbey #35 called $he rank of @ and is independent of the
tra.nsfo%;eiien provided it is non singular. The ¢, must all be
positiye,\’_'Q is positive semidefinite and the transformation
L. =)L leads to

N/ Q=3 I¢.

il

If Q, has the rank #, and @ the rank =, then @, + . has
at moss the rank n, + n, for

O+ Q= DL+ M

i=l .=l
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Some of the L; or M; may be represented in terms of the others,
Eliminating as many of them as possible we obtain

Q1+Q2=iiziiNiNs‘ n’Sﬂl'i'nz,

i=] i=1

where the N, are independent linear forms in the 2’s. Hence

& -+ Q; has at most the rank n, + n, . Hence we have ~
Lemma 2.1: The sum of the ranks of s guadratic forms, tsyiot
smaller than the rank of their sum. O
If 2, , z; are two random varisbles with the xgéiiﬁs i, and
#; then . ¢

&
B(x, — P (Ea Ha} = @y N\

AN
where E denotes the mathematical g;i)ée}cation, is called the
covariance of x, and x, . A\

Let 2., -~ , z, be r jointly normally distributed variables
with ‘means 0 and covariance\thatrix (o5;). Their density
funetion is given by 3

NS

A 1 12 N S
G e S g L R
where the quadl:a}it}form in the exponent is positive definite.
The probe}bility Plla, , -+« , 2 C 7] that the point
(:F‘ , b ,\ ,11,} 1s in a subspace T of the dimensional space ig
..s’\\“ P[(Il EA ,.’.C,) CT]
Ay
\‘:" =_LP($1;"‘;xr)dxldivz"'dﬂ?r-

If BE(x) = p; = 0 then we make the transformation z! =
% = u: . We shall formulate the results of this chapter for

the case that B(z,) = 0, T4 will be essy to find
1 ; th
formulation for the case Blz) = 4, . y to fin e proper



11
We apply & non singuiar linear transformation (AAA, 11T, 6).

(215) I = Z'pifyr‘ » i = 11 et
i=1

The Jacobian determinant of this transformation is | pe; |
and the new density function of the s is therefore given by

P sm : O\
{2.16) Qy,, -+, ¥ = iy 7z & Y Z a* iyiyi ’
{2m) | Tif | :’\t\'
A
where (P) = (p;;), (6*'") = P'(¢")P, and || P |{ denotes the ab-
solute value of | P|. We may then write the constant term in
(2.16) as ' \v
Pl NN
@y o 7 @7 [P @P X0 @0 Lot |
We see therefore that the ¥'s apé:aifso jointly normalty dis-
tributed with means 0 and coxiagf;iime matrix

(2.17) (ag‘,-)%“i’;"‘(a.‘,-)l’"‘-
The matrix P ig c;‘fai\;%»i\ orthogenal if
(2.18) P“1== }” o0 PP=PP =1
In terms g(ﬁ};e}coefﬁcients Py Of P this means
\O~ (1 i =1

(2-119)‘\ E Pixlie =

NN 2o 10 if i #= L

&
LI , -+« , a, are independently distributed with variance
s then

(0 for i#j
(2.20) o',-,-=i '

¢ for i=3
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and it follows from (2.17) that if P is orthogonal
& 0

@) =P o |P

: 0..-4°
(2.21) ~
@ 0 & 0 .
e e O\
=PP|l. . ] = |. ... {T} v
0 -5 0 .- A L

¢
since a sealar matrix (AAA, 11, 6, p. 30) co’mn?},ltes with every
other matrix. Hence we have \
. :.\\,,
Lemma 22: If z, , -+- , z, are notrrally and independently
distributed with means 0 and commpiwariance o” and if
(2.22) Ly = Z‘Pifyi ;*I"ik@- =127
jml RN
where P = (p;;) 1s an m’ﬁogml malriz then the y, are inde-
pendently and nomml{g{dz‘st;-ib'tded all with the same variance o°.
We proceed t, Qi-;ire
Lemma, 2.3 Let
0 -
(2.23) O Elxﬂ = Q@ + - + Q),
i"\.‘. i ) .
whete):(z) is a quadratic form in 5, s oo, @ of rank ni (AAA,

UL 11). Then there exists an orthagonal transformation
o N '

e #%=Fpan, i=1,-.n
such that
LIE SR
(2-25) Qt‘ = k.“”—.;”h”—l x;z, 1 = 1, e L8

fand only if n, + ng 4 ... +n, =n
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In the first place we have by Lemma 2.1
(2.26) m+ etz

since the rank of the left side of 2.23 is n.-

Suppose first that there exists an orthogonal transformation
falfilling the conditions of Lemma 2.3. Then 2.24 and 2.25
imply

(227) ki + - + n, = %
Now let 3. n: = n. Since Q. has the rank n; there',.g'x:}st\
sransformations \J
= \'\"\
IL; = 2 Piede '\\
{2.28) k-1 X 'Nj}
Gm et e e e
such that o\
;=n.+---tn;:;"
(2.29) g = N Li.

[T PR
™

If the L; were not indepengéﬁ‘t, then the quadratic form
’:\mg Qs = Z L?
¢ \.,l i=1

would have a rank\smauer than n. But this is impossible on
account of 2.237Hence the L; are independent. We may regard
therefore ghg"j;ransfonnation (2.28) as one non singular trans-

formatiomwith j = 1, - , n. Putting
‘.,i\ L, b}
O L=\ X=[| P=0b
Ln Tn

we may therefore write L = PX, where P = (p:;) is non
singular. Since

N



N

\‘;
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we have
X'IX = I'PIP 'L,
But P*"*IP™" is the matrix of Q as a form in L, , - - - , L, and
this matrix is the unit matrix. Hence
PPt =,
. N

P and therefore also P are thus orthogonal matrices and
Lemma 2.3 is proved. L\

THEOREM 2.1: Let 2, , --- , 2, be normally and z’nd{eﬁ@?idenily
disiributed voriables with varianee 1. Let N
(2.29) Gt Q= X

: i=1
O

where Q; 18 a quadratic form of rank n, . O
The Q. are tndependently dﬁsiributed}@ﬂ Q. has the chi square
distribution with n, degrees of Treedogaf and only if

(2300 Ty + 7, +,fZ;"-:'"+ n, = n.

<

Suppose first that the @:are independently distributed snd
that @; has the »* disfribution with n; degrees of freedom.
Then by Theorem NG + -+« + Q, has the x* distribution
with n, + n, %%+ n, degrees of freedom but on account
of (2.29) it has algo the x* distribution with n degrees of freedom
and (2.30) follows. .

On the;.({th‘er hand suppose that n, 4+ «-- 4+ n, = n. Then
by Le:n;mga 2.3 there exists an orthogonal transformation

O
S & = 2 pus
such that
. Rakorapp

Qi = Z m;z .

i=mtvaini_ 4t

But by Lemma 2.2 the quantities ! are normally and inde-

. pendently distributed varigbles With means 0 and variance 1.

Hence the @, are mdependent]y distributed angd €. has by our
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results in chapter 1 the x* distribution with n; degrees of
freedom. This proves Theorem 2.1.

Corollary to Theorem 2.1: Let 2 , -er, T, be normally and
independently distributed with means 0 and variance o° and let
Qi=1,---,8bes quadratic forms tn &y, <~ 5 % with ranks

Ry, v, M and

Gt tQ=Q= zx

' ‘O
then n;/n; Q:/Q; has the F distribution with n; and n; deg?gio/s\of

freedom respectively.

:
277G

!
The variables #,/s, -+« , %./0 &€ normeally dis i'bi;:ed with
variance 1 and means 0. Therefore Q./ +* has B¥ Theorem 2.1
the x* distribution with . degrees of freedon(and the corollary
follows from our results in Chapter I. >
The corollary to Theorem 2.1 is of i;pﬁg}t-ance in the analysis
of variance. Theorem 2.1 and its cgrpﬂa‘ry were first formulated

by W. G. Cocbran. N
.\“'f‘*
K
¢ &\
N
7N\
NGO
A
NV
“
O
RN
A
& \"4

N\



CHAPTER 1III

Analysis of Variance in o
One Way Classification

LerX,, -, X,bes normally a.nd independently distributed
variates w1th common varignee ¢°, and let X ¢ have the mdan

- value u; . For instance, consider s dlﬂerent races of cattle ahd

"\ N/

\‘;

let: X be the birth weight of calves of the sth race. We wish

to test the hypothesis that By = oen == g
Suppose 2 random sample is taken of 5, 1ndJV1duals of X,
e of Xy, -+v  m, of X, . The values obtameQare Ty, v,

Zin, , from the first variate oy
and so forth. Let

sty TinJrom the second

\.
£i1 + Tz + - \‘1’“ Tin;

n“ N\ N }
be the mean of the sth sample artd Tet

sz‘jp. n_n1+"'+ﬂ,,

xr; =

where Y, denotes suxpmatlon over all values of 7, be the total
mean.

We shall ﬁmt\prove the following identity. Let &, , ---
a; be { numbers

"\

.'\'": (x=a1+”'+a‘
\, i
theilﬁne’a.n then
(31) Za’fr—‘ Z(a‘- — o)’ + 2.

Proof: We have
Sel = Tt o
Tt T

16
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bat

E‘_(o:,- -—a)cz=a2(a.- — a) =a(z£‘,a;— 2a;)=0

which proves (3.1). We apply (3.1) to > ; «3; and obtain

3.2) | z (%i)g = z (x5 — x-‘)z + n; .
Thus ¢
(3.3) E Z T3 = Z Z (#:; — x)* + En.x? . KoY

A
Next we apply (3.1) to 2; n; whereby we cons;cler et

as the sum of n,; quantities. Then z is the mean of> il %the n

quantities z; and by (3.1) \‘ :

(3.4 2ngl = 2ondas - ) +
¥ i o .'\ o
Substituting (3.4) into (3.3) we ﬁna]ly' 'lﬁve

(3.5) Z Ex., E Z(:c.-,- j )”“+ Zn.(:s; — 2)® -+ na’.

We shall always write E(x) forthe mathematical expectation
of a random variable z. Weput B(z.) = p: and 1/0 . fep: = 4
then (2, — &) = (x.,{::\}z) — (2; — ) and by (3.1)

3

PN
'\:3\ ’ Z E (@ — P§)2 - Z"’ﬂfi(i‘i - #:‘)2-

By a@nﬁptwn E(x; — p)® = o° independent of ¢ and J.
Smee %, = ¢*/n; we obtain from (3.6)

\\ U EE T G — 47 = et — 8* = (a = 9"
On the other hand
ch(fﬂs - z) = z‘_:ﬂe[(ﬂ?i - — &)

(3.6)

3.7

Zn,—(x,- — W —nlz — @'
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But
@ =W = (@ = )"+ e~ W+ 2@ =) (e — ).
Hence
B ~ 0 = Bz — u)® + (u — w?

(3.8 2=~ B -y
2 \)
== = Wt \O
Therefore from (3.7) ’\gf ’
E[E n.—(x.- - I)z} = s¢* + E n.'(ﬂ,-.“;} _14)2 — g
3.9) ' "W

= 6~ Qo0F Xl —
Thus whilst B3, 3, (x,,- js.';t:;)“"] is an unbissed estimate

of (n — 8)o® regardiess of anyiypothesis about the x; we see
from (3.9) that 37, n.(2,45°2)" is an unbissed estimate of
e only if uy = p, = -p. #. - Otherwise its expectation is
larger than &2 That i o say; if the hypothesis 4, = u, =

c == 'Q@zfect the ratio

610) o WorTs_Time -

O\ 3—12-' Zr‘(zif_'xi)s

. o)
will tend\bo be large. Tt seems therefore, reasonable to use this
rati;y ‘a8 a statistic for testing the hypothesis B = py =
N s = u and to reject this hypothesis on the level of

this F ratio will be given in chapters 4 and 8,

We shall now show that the statistic ¥ defined by (3.10)
has the F distribution of Chapter 1 with (s — D and (n — )
degrees of freedom. We first substitute in (8.5) z;; — u for
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E‘_ Z’l (e ~ W' = Z Z (z;; = z)°

3.11) |
+ E_n;(x.- -0+ alz — w'.

We now put
2_ Z (x: — 29" = @ of rank m, ,

¢\

z'_: ne, — 2)° = Q,  of rank m,, N

nle — @' =Q;  ofrank m, \:\

0, is a sum of squares of the linear forms L= (z:; — ).
Between the L,; there exist s obviously ind dent relations
YiLly=0i=1"--,s Smcewemay(pll

i1

=_EL=IJ }'_;"(1,"‘,3),
and thus write @, as a quad.ratrc fbrm in (»n — s) linear forms,
it follows that @, has at mdst the rank n — s. Similarly Q,
has at most the rank s -—"‘}. and Q, has obviously the rank 1.
But ¢ \ :

(3.13) (n—\s)+(s—1)+1—*n

It follows thus 'from (3.11) and Lemma 2.1 of Chapter 2
thatml-—xé ssmy=58=1m=11p, =pp = ---=p
then the\(z;; — g} are by assumption norma.ﬂy and inde-
pendegitly distributed with common variance ¢". By the corol-
lary\to theorem 2. 1

n—8@,
X (3.14) ey
has the F distribution with  — s and s — 1 degrees of freedom
respectively.

If the quantities ¢ — # are not all equal to O them ),
ni(x; — )°/¢® does not have the x* distribution although
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2 2o (@ — 3)/0 = @, still has. This may be seen by
applying (3.1) to obtain :

Q = Z (25 — po)* = E (@i — 2" + nia: — #,

(3'15) =@+ ni(xi - #()2:
O\
t= (l, . :ls)‘ ’\:\‘
The rank of Q; is gt most n; — 1 and it follows from‘}'Senima 1
in Chapter 2 that Q; has exactly the rank n;, — 1. From Theorem
2.1 and the independence of the z;; it thus follo}\v}s that

A\
(3.15) P MCHEEPALANS)
w\,/
has the x* distribution with n — s\dp?grees of freedom irre-
spective of any hypothesis about {e ), .

In the comparison of classes W'is very often desirable to
test the significance of differendét between class means, Suppose
we wish to test whether thete'is a difference between the means
of the ¢th and the fth clags® We put '

i""\ nx + ;24 =
.\\‘.. n + n;

!

and consider the expression

A\
:t\'"’}h(&'s -2+ niw, — )’ = ni(z; — ')
’N\".

@18

N + s ~ &) 4 (@, L )z’ — 2.
'~\i DTt follows that

2wz — 2)* = 2t~ 2 + n s, — )
(3.17) _ i
' Fne - 2 @, + e’ — z)°.

Substituting (8.17) in (3.11) we have, on account of (3.12),
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Z Z (s — W) =@ + En(:-“:; — 2)° + nile; — &)

Ixi
iz

(3.18)
+nz; — 20+ (s + a2+ alz — W

The rank of

Z ﬂ-;[(ﬁ:; - x)2.+ (ﬂ'( + n,-)(a:’ - x)z I\

[T \

L A
. ey
is at most s — 2. The rank of o\ e

s W
T4 N:‘
nz: — 2 Fnile; — &) = —— (z — &) ).
) + 1( i ) 7 + n; ( '..J“

is cne; hence by the corollary to Theorem 2.1 AY
\/
R _n— 8 gy (a:;—\"%‘)_
(3.19) F ="t RCS

has the F distribution with 1 andz+— s degrees of freedom

respectively. We have shown before that @ is not affected if
e 7 p; but .:’,‘3 )

.

Bla, — 2" = B{llaS W) — @ = w) + (s = T

N
Hence (z; 7@y will tend to be large if x, differs substantially
from g; .sz;%eems, therefore, reasonable to use the F statistic .
in (3.1@0 test the hypothesis u; = g; .

23
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CHAPTER 1V

Likelthood Ratio Tests and Tests

of Linear Hypothesis
Ler THE VARIABLE VECTOR T = (%, , --- , *.) have r@ej
distribution function f(z, 6, , --- , 8,) depending on % param-

eters 6, , -+, 6. We may know that 8, , -+ -, 4, satisfy{certain -i

relations. N\

W

gd, -+, 8) =0, . i= 1, "'..,§:§§‘Z
4.1 O
d<egh  adh
We wish to test the hypothesis that b, aN oy G, satisfy certain
additional relutions,

RS
(4.2) g,(6,, -+~ ,8) =0, j=8.+:]‘.,"-.-°,s+r, 0<r<k—s
Let 2, -+, 2, be an ipdgépéndent sample of nz's. The dis-

tribution in the sample space is then given by its probability
density N :

(4.3) oz, , \m\ z) = [Ts@:, 0, a).

‘ For g giyglztsample Ty, -+, @, the density becomes & fune-
tion p(fs,4- , 6,) of 6, , -.. » & . Let 8,, --- §, be a set of
values for” which p(s, , - ..

strictions (4.1). We call 3, , ... » 8 the maximum likelihood
eg}w ates of 6, , -+ | 4, . Maximum Likelihood estimates may

*o+, 85 . Clearly

@H B, By > p(, 81).
The ratio
(4.5) p(a;g "ty B;) =

p(alx Tty 3&)
: 22

y ) is maximized under the re- |

Jalso be obtained under the restrietions (4.1) and (4.2) and
-~ \"\ these estimates will be denoted by & , [;
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is called the likelihood ratio for the hypothesis (4.2). The use
of X as a statistic to test the hypothesis (4.2) ean be justified
on the basis of certain criteria (sec fi. A. Wald: Tests of
atatistical hypothesis concerning several parameters, when the
number of obscrvations is large. Trans. Am. Math. Sec. 54
pp. 426-482). We shall at this point advance only an intuitive
argument. Suppose that our hypothesis is false, then A would
tend to be smaller than if the hypothesis were true. It seems,
therefore, reasonable to use A as a statistic to test the hypothesigh,
(4.2) and to reject it on the level of signifieance a if A P W
where Ao is chosen so that P(A < Ao |4.2) = « where P(E MH)
denoies the probability that the event B will happen edmputed
under the hypothesis II. - R4

AlL the tests which will be discussed in this ek are tests
of linear hypotheses, We consider a set of N xandom variables
w, ++, yvand put By = Ual- We shgl(make the following
assumptions. N\,

1) The y. are normally and indepp?idéﬁtly distributed and their

variances are equal. 0
9) The i, are linear funcligns of p paramelers By, *+ 5 By s
p < N. O
2N\
(4.6) o = )%\y.-;ﬁu @=1--,N.

and the rands (AAA 1L 7) of the matriz (g;.) is equal to p.

WX

Eliminatipg) the 8. from (4.6) we see that the assumption 2
is equiv lae:ht’to assuming that the p. satisfy N — p linear
restricfions:

e

\ E)\hp“-:(', k=1="'=N‘-'p:

\(,f_é;) . .
rank (Ape) = N — p.

The hypothesis we wish to test is that the 8; satisfy s inde-
pendent linear restriclions.

4.7) Zkir‘.si:()} 1=1-,8 s < p.
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The hypothesis can, by eliminating the g; from {4.6) and (4.7}
also be wnitten as

N
Zpkm"-uzog k=1!'”!81
o=l
r
(4.7 )
All e Maw
. . O\
O
:‘.\\ o
- e Ao D
r ] RI\T P, 1 N-—p. N - N —_ p +'8’\'§
i1 MR 5 ¥4 AN\ 3
\::’}\\'
~NY;
upal B 1Y r »

\1.
Aecordmg to assumption 1 the joint density function of
Yr, *+ , Yu iS given by ‘,':..

1 N ',:‘; "1 (yn - #n)z:]
urN(Zm-)N’"i e&:&[ 2 Ea" P :

We now computg}he likelihood ratio. The expression {4.8)
is maximized if\*i(e"ininimize

(4.8)

@9 Bl —wd' = T @ — gy — o~ g
AN/ =
Lemi;', , b, be the maximum likelihood estimates of
ﬁl\“ s By We put,
O\
”1}10) = Z (ya b glabl - - gwﬂbo)s'

Similarly the maximum likelihood estimate of ¢ is ohtained
a8

(4.11) 3

F =

2@

The maximum likelihood under the assumptions then be-
comes
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— N Y ~N7/2
(4'12} szmax = ZTQ € .
Let Q. be the minimum of
Z (ya - #a)z = ; (yc - 91«131 _ = gvuﬁp)';

obtained under the restrictions (4.7} imposed by the hypothesis.
The maximum likelihood under the restrictions (4.6) and (4.7)
then becomes

Nie £
(4.13) Wong == (%}2) e z3 & \J)
Henee the likelihood ratio is given by N

N/a &
414 = (%-) _ )

In testing a hypothesis we may instead of 3, gbrén test function
like X take any monotonic function of.it, “Hence instead of
(Q./3.)7* we may take as a test functionQ,/@, or

(4.15) p=N=-Po=0
8 28 &

We decided to reject (4.7) if A "< Ao whereby A, is determined
50 that P(A < A [4.7) =& Since F is a monotonically de-
creasing function of A we ohtain a test equivalent to the likeli-
hood ratic test if we.reject (4.7) whepever # > F, where
P(F 2 Fo |47 =&

We proceed t6/derive the distribution of the ratio (4.15)
and we shall’abow that it has the F distribution of Chapter 1
with s anQ"N ~— P degrees of freedom respectively. We first
prove: ~,j'\

_Iemima 4.1: Let

Tade) Do =0 =1,k

be &k lincarly independent linear resirictions on the values p, ,
«, iy . Then there exisls a syslem of resiriclions

(4'16,) Z bisst; = 0, i=1,--k
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such that the restrictions 2, Gopty = 0,4 =1, -+, 1 < & are
egusm!enttotkeresmmangbup,—Oz—l £<k

andsuckt}mthemwsofﬂwmatm(b.,)arewthogmaltaeach
other, that is io say such that

o . I ife=3j
R 1 R > S

wst 0 if i » 7, R
e

Proof: We put o\

by = _?n_s 2 « -

(E ;) AN 2
0
b = ay; — Aby, where A ;\E by ita;
then ' ,x’.\\"‘

Zbub& = E ?;(é{g}z\“ A=0,

")

™Y b¥
b= = | 1
() b2; )

This is possible singg.

We then put

\'\iw’ T s o,

i

the second equation would be a multiple of the first,
: ’tmg the assumptwn of independence of the Bystem

E:’ iy =0, E biip; = 0, i=12

O e biously cquivalent. Suppose now that we have succosded
./ in constructing a System
(4.18) Lbate =0, i=1... 1<

fulfilling (4.17), which is equivalent, to

;a..qp,-_-o, t=1 ... l<K.
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We put

bfﬂu = dit1e — bea -ttt '_}\lblu 1
where :

)\f=231+1ubin: i=1;"'alr
then

; bl*+;¢bfu = Eaﬂ-labia - ;

=i

“\ibiﬂbia ]

Since (4.17) is valid for, j < Iwehave 77 & (4,
E b?*lﬂbfﬂ = E aj.;.lb“t _ x,- =\0.
£ " :'\ W’

Now 2. b¥ > 0 since otherwise t];e':?t 4 1)st equation
would be a linear combination of the fitst ! equations, contra-
~ dieting the assumption of independence of (4.16). We then
have only to put N

V:O
o \ -
blsdvla

bl T

to obtain the ( +’1)}’o\equation of the system 3 u Biatta = 0
fulfitling (4.17) and equivalent to the initial equations of (4.16).
The process may\ be continued until all & rows of (4.16718r® -
obtained. . 0 &

Appiyitig-Lemma 4.1 to the restrictions imposed om
by the hypothesis and the assumptions of the linear hypothesis

We Mgy assume that the rows of (4.6") and (4.7") are normalized
‘Qd orthogonal, that is to say that

0 foris¥j

Z Righia = Z PiaPia = ¥ = {

i for sz = j.

Z p;,l,-, = 0‘.




28

If p > s we form an additional row TIRE
E hn’n:‘rlat = 0)
i

E_ PigTia = O;

'This is possible since N

+, Tia Such that

1: T, P

-,

N
= P + s < N equations il ¥ un-

knowus have a non trivial solution, Thus continuing(we finally
obtain an orthogonal matrix PAY
N\ 3
(N
3 L "4
A1'1 H ] Alh“ . \'
BN
:~\ v
,{.,§{'
Mgt 5 v oo {5’)}3"—»1\'
Pu, 9y y 1w
. \t:’{“
419 ) \\
'-1.‘{?01 ] YUty Puw
g\/\\.} Tu T Ty
A\
'..‘\.)
WK/
s‘“}
“\:{" \ Ta—a1 r Tty T»-nNJ .
Y e now put
O
* .
¥ = 2] Nt fori = 1, ' N — p;
(4.20) W = E Prala for k = 1, -,
Y¥opirsz = E Tiale forl = L -, P —s
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Tet E(y*) = p¥ . Then

p§=zhaipiy a=1:"':N“?;

(420)  phogep = 2opmmi, B =1-",8
1

BN-pisty = Z Tyili » ¥ =1, P — 8
¥ £
Then since {(4.19) is orthogonal . O
DRI D I ) PN
> E: g \\~

By Lemma 2.2 the (y% — p%) are normally and in&épendently
distributed with mean 0 and variance ¢”. Theassumptions then
state that % = Ofora = 1, .-+ , N — p.Hence

N

N—p .“:
(4.22) Q.= 2y
a=1_ "%
Similarly SO
A \Fr=p+s
\
o=
£ \nl [
and P \
AN '\H} - N-pte
(4.23) A Q. —Q= X ¥
}..\:' a=N—p+l

Hence @Q%If the assumptions @, is a sum of ¥ — P inde~

pendedtsquares and @./o” has the x* distribution with ¥ - p
degé%‘s of freedom. Similarly (Q. — @.)/¢" has the x* dis-
thibution with s degrees of freedom and @, — @, and @. are
independent of each other. Hence

_N-p0Q -
§ Q.

has the F distribution with s and N — p degrees of freedom
respectively. We, therefore, have -

(4.24) F
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TrwoREM 4.1: Let g1, , -+ , y be normally and z'ndependenﬂy.i
disiributed variables with the same variance and means p, , -« ,
by respectively. Assume that the p, satisfy the independent rela-
tions |
(42‘5) Ehiaﬂn_—-o %:=1,"',N—P.

To test the hypothesis that the p, satisfy relations \

(4'26) E pidﬂa“—'-'o 1= 1, tre . 8 3 _<_ 7. "\...\

N\

tndependent of the relations (4.25) and of each ot.’@';’«.u;e form the
ratio AD

A\

"‘\
@) P20 -0
: 8 &Y

where Q, is the minsmum with mpm‘{ﬁ ba Of Dou (o — o)
under the restrictions (4.25) and Q Wieminimum of 3. (y. — u.)°
under the resirictions (4.25) and (4.26). We reject the hypothesis
(426) if F > Fo where P(ESX'Fy | 4.25 & 4.26) = « and « i
a fized constant, Then O\

1) The test described. is equivalent to the Likelihood ratio test

~ Jor the kypotfw%is {4.26).

2} The ratiol(4.27) has the F distribution with s and N — p
degrees of freedom respeciively,

We candormulate cur assumptions also in the following
mznnet:, We have

’\\:\ yq=ﬂ'u+eﬂ;

.jizqhgre the e, are normally and independently distributed
() Vvariables, According to our assumptions (4.6) we have

(428)  y, = g.8 + "t Bt e, a=1 ... N

The equation (4.28) is called a linear regression equation of
yonbi, -, g, The coefficients 8, , --+ , g, are termed the
regression coefficients of y on g, 1 ** "y 8 . We have shown that
their maximum likelihood estimates b, , --. , b, minimize the
expression '
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(4.29} E (ya - 13191:: - Bpgpu)z'
Hence we must have
E (Yo — Digha — 0 — buve)fia = 0
(4.30) '
i=1, - ,p

Multiplying the ¢th of the equations (4.30) by b, , adding over « {
all equations (4.30), and putting

&
(4.31) Y, = bigra + *** + babhoe O
we obtain A

(4.32) T . = YYo= 0. O

The quantity Y. is called the regression vs%lue of ¥, on the
variables ¢ia, 0 ) Ope -
The minimum §, under the a,ssumpthns is then given by

Z (ya - u) = E (ya <\ n:)ya Za: (ya — Ya)Y

N
e
Ny

(4.33) : N
BV
o) )
Let now V* be the régfession value of ¥, 00 G1ay *** 5 Fou under
the restrictions 4. 6 a0 47. Then similarly

(4: 34:) Z‘\) Qr Ey« z Yﬁz
:\ o “

Hence \iw '
(4. 35) -Q, = 2 (Y2 — Y%).

\.’I‘he restrictions {4.7) are equivalent to stating that B, -+,
8, may be expressed by p — § parameters yi, *** s Yo—e -
(4.36) B = E Rirys - t=1,,p

Let ¢, , *+- , €-, be the magimum likelihood estimates of v; -
Then
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(4.37) Y = Z}o; ); Feakirs .

Multiplying the #th of the equations (4.30) by ke and
sumring over { and ! we obtain

(4.38) 2. — Y)¥:=o0.
Since also 3, (4 ~ ¥%)7* = 0 we obtain ~
LT -YO¥i= X .~ YHY: O
l'!: " o ‘~\:\ ) ;
— 2. - Yo¥ae0
Hence \:m:\g.“
2T — T = 2 (Y, -y,
« = A\
(N
4.39 2
( ) - Z Yi’\h- Z Y*E
Therefore 8 ”'
(4.40) Q- Q=X (v, — v»°
and ~<

P 8 Zu (ya - Ya)z
aay O

<;~" N —p .Y -3, e

AN = N e T

~C 8§ 2ade— 2. V°

T&(ﬁ}gda linear hypothesis means essentially testing the sig-
uifieance of the coofficients of & regression equation,

O From (4.33) and (4.39) it follows also that

E@a~ Y. = gyi—— 2 v

o

(4.49)
- 2 (Y, - j 441
This result ean easily be generalized to yield



33

Turorem 4.2: Let H, , -+ , H, be a sequence of hypotheses on
the means of the variables . with E(y.) = . of the form

H, : Ba = 2 Giabi

H,: Hl&Hz“‘&Hl—-l&Za‘h'ﬁi=Or

O\
k=3:«-1+1}'“183! 5i<p )

- » '\‘ A\’
such hat the linear resirictions imposed by H, are independent.of
each other. Let Y be the regression value of y. obfained under
the hypothesis H, then )

St - . - Y+ D EReYey
(1.48) | R\
Foe 4+ DO PO+ T

Theorem 4.2 is very useful in redueitig the labor involved in
somputing sums of squares of ~:eiévia1;ions from a regression
value. NV o
We now turn our attention to the solution of the equation

{4,300, We write RA

(444 T gdifeE o, 2 Yafia = 0
Lemma 4.2‘:@?3:9 =g G=1-pa= 1 ---, N}

be any mapieof rank p < N. Put g¢’ = (a:;). Then the quad-
ratic forqi Y > @ik s posilive defintle.

Prqqf:’bonsider
AN cup

= Z E Oy = Q.

clearly Q is either positive definite or positive semi definite.
If Q = 0 then
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(4.45) Tt =0, a=1--- A.

Sinee g has the rank p there are 7 linearly independent equa-
tions in (4.45). Therefore, (4.45) has ouly the solution x =9,
¢=1, -+, p. Henee Q is positive definite,

Corollary to lemma 4.2. The determinant la, | ds dz}?‘eqjim

Jrom 0,
This follows from the fact that all the prineipal minghs ‘of a
positive definite matrix are positive. o\ N
We may rewrite (4.30) as h
(4.46) E“*’f’bf =@, f=1 ... ‘\ﬁ, 3
or in matrix form RN .

% 3

by '\ Nl a;
A @O =@, = -
. . :v b,, o,

Bince by the corollary tc'i’lemma 4.2 (a:;) is non singular we
have with (a*’) = Aags) ™

7

(4.48) P B\ b= (¢')(a)

or \‘“ _

PRI 7, ” :

NS b= Do, i=1 ...,
'§w 5

) ’We see that b, i.s, a linear function with constant coefficients of
~ Sthe g, . H.exfce if the ¢, are jointly normally distributed, then
. the b, are jointly normally distributed and their distribution is

comgletely specified if we know their means and their covariance
matrix. We have putting
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E(b) = Z a” Zﬁ) 9iaBya) = Z a” }; Z; F1aGiab

(4.49)

= Z Eﬁ a”dizﬁi = 12 Sl = B .
i
Thus b, is an unbiased estimate of 8; . Further
Tosey = Z}: Ei a‘ka, U'cmu = Ek E: a“ka‘” E Zﬁ FealipTyave -

Bt 0y,y, = 0if @ 7 8 and o), = o . Hence
" ik ik Z\ A
Opiby = g Z Z a'*a’t z Trafle = o E E a ﬂr’\aw

(4.50) B \,\;‘
=o' 3y, a"e, =a'c". K7, N
E . /

We proceed to prove

TaroreM 4.3: Let Q, be the mmzmum'\o_ﬂ\the quadratic form
3o (o — E(ya))” under the assumptwn

,o

(451) E(ya) = E Bilfie + Z ﬁdgaa ’ a=1,-, N.

and Q, its minimum under the restrwtms B:=0,1=1, , &
Letb;, (e =1, s),b((‘d—s+1 -, D) bet}wleastsquare
esiimates of B; , B, ,\\ 4 B, under the restnctwns (4.51) and pui

-1
£ D 1,
O ()7 = .

AN
)

Then >

"\‘

(4. 52)\\ o ~ Q.= X Tabd

\w\ In the followmg let %, j, k run from 1 to 8; 4, ¢, ffroms 4+ 1
6 p; o, 7 from 1 to p.
Put

-1 §i i
i Gig e’ a

(@)

!
)
I

(4.53)
®a; Caa e a
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Then by (4.50)
(4.54) @™ = (o).
We have
=XV X Ve=2h - X2 Y gugedd
(4.55) A
= 2te = X Doubd = Tyt — Tab,.
-3 T o \ \
Let b5, d = ¢ + 1, --- p be the regressmn valugs‘\}‘or B .
obtained under the hypothasm = - 8 = L{ \Fhen by

{4 55) Yot ¥ 4
N \\o

@ - Q= Dob+ T ab Dbt

(4.56) N
}:a.b + Za‘,@; — b).
But from {4.48) we have o\ O .
2 aulb, <8 = = 3 asb,

Hence «S\
(4.57) b\'\\b'* = — E o' E 4;b;

and from (4 QG) (4 56) and (4.57)
Q:\ Q. = E‘ b:(z a‘t‘ibi + Z aidbd)
N ' "

N 'Q"‘

- Z ay Z a’ Z @os by

O ¢ ¢ f

,..\ 7

\/ (4-58) = 2‘ b,(z a"'fbf + Z a“'dbd)

- ; 2‘ ; 2 a“a'd‘a,,-b,-bk
- Zﬂ Z': ; 2 adfa’d’a,,-b,-b; .
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The coefficient of §;b, in the expression (4.58) is given by
nd ; E ﬂ’dfﬂ"d’aei = iy — E LI

(4.59
=y — a;; = 0.

The coeflicient of b;b, is given by

(4.60) Qs ): Z G’ 8. = B - ~
Our theorem is proved if we can prove that &, = ¢ . This ig* > Y
proved if we can show that E a8 = 08 . We have \\ ”
% \/
(461) Z a E;; = Ef a ﬂfg - Z Ed E a”ad;‘a’?@;{s.
Now \::’}\\’
3 ol + 3 ata, = 8. =0
7 7 K7,

Hence {4.61) becomes

Z a’ a’:k + Z E Z.u a,;a a-,gk
Eﬁ ;¢ '{" Z Ea 81altax

N\

PENY
= x%:‘af”a,-k 4+ Z @y = i -

Hence &;; = ¢;; andi?heorem 4.3 is proved.
Corollary l af“rﬂzéorem 4.3, Lel the hypothesis in theorem 4.3 be -

[

{4.62) {s;&»— Zz,,ﬁ;—o i=1 - ,s5p,

wheg'e\;ﬁe rank of (L)) is 8. Pud
Q LT T o _
3o lb, = bF ond ~FE] =y

a
Then

(4.63) Q — Q= 2 Ec'.-fb;"b;" .
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Proof: Since the rank of (I;) is s we can add p — s rows to °

(1.;) to obtain a non singular matrix (I,,) with p rows and P

columns. The 8, are then also linear functions of g¥ = 3,

LiBe,v =1, -+, p. Clearly b* = 3, I,,b, must minimize @,

and the corollary follows by applying theorem 4.3. _
The most important special case of theorem 4.3 and its
corollary is the case where s = 1 then

20_2 '\_:
(4:.64) Qr - Qa = ;2 * o\\\
s A\

In finding Q, it is sometimes required to miqh);‘iih Q =
Doe (a — 2ot Guifi)® under some linear restrictigns on the 8
A\
Ly = L= 0, i= 1507,
1 \
K7

rank () = 3°Cp.

(4.65) =

Then s of the 8; can be eXpressgd.'gs'functions of p — ¢ of them
and the regression problem may; thus be reduced to a regression
problem in p — s of the g;o)

Suppose that all the 8% can, by means of (4.65), be presented

as linear functions x(lf‘\é’f‘, ey BE BE., -0, 8%, , where
the g% are linear @etions of B, «--, B, and that we test the
hypothesis ¥ & %, = 8* = 0. Then theorem 4.3 alsc applies

to the maximum likelihood estimates b, -
write @ as ;aifunction of 8F, -+, 8%, .
Instg.a@,\)f the elimination procedure of the preceding para-
grap%it’ 18 often more convenient to employ the method of
La.gi-ange operators. This method consists in differentiating

the expression

N/ (4.86) Q@+ ML+ -+ AL = @
with respect to g8, , - ..

-, b¥, sinee we can

» B and solving (4.65) together with

(4.67) o,

aﬁ‘._‘ ‘i___l,—-.,p
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for the s 4 p unknown quantities 8, , -+ , o and M, "o,
A, . The values for 8, , -+ , 6 obtained in this way are exactly
the maximum likelihood estimates by , -, by obtained under
the restrictions (4.65). A full aceount of Lagrange’s method is
given in Hancock ‘“Theory of Maxima and Minimsa Chapter
vi7,

The regression coefficient 8, in (4.6} will be termed the

general mean if g,, = 1 forall e _ 'S
TaEOCREM 4.4: Let LN
N\
E(ya) = Ha T E‘l giaﬁ; . .."\.}‘.
Assumne that . ,.:\g’
1) B, 1s the general mean. O
: o
2) ¢iq 15 either O or 1, T=1,  \yns.
3 2 Gialfie =0 f 2 ?J;%J < s.
H Yofta=1 a=L% N
Lt -
N\
1f O
b\ > 2
.,':. ‘Q = Z (ya - El giaﬁi)
¢ i
is minimizedwith respect to
\V
”i’\'\é}: vy B and Z—:l L3, = 0, 2 & #0
A\ ) . .
“Nis'the only restriction on By, s B, Byand if Au8 the Lagrange

multiplier associated with
S8 then A =0.
i=1

Tt may be emphasized that any number of restrictions may
be imposed on Buxr, 1 Bo-1 - Denoting by by, *-- , by the
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least square estimates of B, -

» B» we obtain the following
equations

| > LA
E Yalfia — by Z g?a - d;u by ; Ganllia — ! _'0,

2
(468} 1 =1, 1 8
z Ya — E b; E Jie — d_Z” by ? fia = 0, ".\"\.
Beeause of the conditions 1, 2, 3, 4 we have A
_ N\
Z¥a= 2 2 Vdin, 2 gia s S
(4.69) R v
L _ ) e \d
E E Giafoa = %ggu :
If we sum the fivst of the relatiqﬁ&{é.&S) froms=1,..-,s
we obtain A, =

0 on account of-{h# relations (4.69),

TN

THEOREM 4.5; Let N

G f\g (¥a — Z FiaBi)Y

]

, \‘ 7
&&™
Let @, be the mz'jm'?hm of G under the restrictions

A</

:1\:“.’ ‘E_l B =
i"\so
and oibsv"restﬂctions involving 8, ., sy Byonly. Let b, , -+
b, bedhe

Seihe least square estimates of Bi, + - B, under these restrictions.
L Q. be the mindmum under ghe resitrictions 8, = ... = g, =
\ and all other restrictions, .

Ier - Qn

s a4 symmetric Junetion of b, ,
assumptions of

s+, b, and if the
theorem 4.4 gre satisfied then

4.70)

2 2
iy Ty, = Cor,
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Proof: Q. — Q. is by theorem 4.3 a quadratic form in b, ,
.+« , b, . Since it is symmetric in b, , -+ , b, and since

Elb(.= 0

=]
we must have

U7) @ — Q= h b +k Y bb =K 30

i=1 .= i=1
Because of the symmetry, the variances of the b; must gl

be equal 1o each other. @, — @, has by theorem 4.1 ﬂ!‘?‘x"
distribution with (s — 1) degrees of freedom. Hence

(4.72) EQ. — Q) = (s — o* = Kaea’(D
and theorem 4.5 follows. N
We now proceed to present some appliqg(iohs of the prin-

ciples developed in this chapter. ~\
Example 1. Consider a regression equgtion

(4.74) EQy) = f: 282,
where the values of ¥ have héen observed for certain values
of z. For instance y may be the length of a steel rod and x the
temperature at which this\ength is measured. We have then
a set of observations, {
N\
ITS\ Yoy " Us
of the variablg"y Observed when the variable z had the values
2, -+ , Fg» We might wish to test whether 5, has some
hypothe{iéa“,\l' value 8, . We then rewrite (4.74) as
(4750 Ely — Bux) = B + (82 — B
\N" —
“Preating now y. — Bat. = ¥a 88 the independent variable
Wwé may apply Theorem 4.3 to the regression coefficient 8: —
8, = 8F. If Y. is the regression value of yx on §, and 87 and
b¥ the least square estimate of 8§ and co” its variance then we
use
N-2 bs?
(4.76 F= - n
‘ WO AR
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a3 & statistic to test the hypothesis 82 = 0. By Theorem 4.1 P
has the F distribution with 1 and ¥ — 2 degrees of freedom
respectively. ' |
From (4.76) we can see the intuitive reason for using the
test function 7. The total observed sum of squares of deviations

Z . — 5 where 7= %t N + yn AL
has been divided into two components; N,

'\

S, Y

T -Y) wmd Doy =% -
Each of the two quadratic forms in g, divided by its rank
(degrees of freedom) gives us an estimat®, of the variance o’
But whilst the estimate of o appearing’in the denominator of
(4.76) is independent of the value éf:\ﬁ;', the numerator is an
estimate of o only if ¢ = 0. jig 8 > 0 then the numerator
will tend to be larger than LS _

Example 2. Suppose now.that y is again the length of a steel
bar and 2 its temperaturé:We wish to test whether the length
of & steel bar is a linear function of the temperature, whilst
admitting the altermative possibility that the function be of
second degree. Q{x assumption will then be

@ O BG) =8 + gz + 807,

P R . .
where t}\elength y of the steel bar is measured a different
tem%m atures z, , «-+ , z, . In terms of theorems 4.1 and 4.3
enave :

W

N : f1a = 1’ faa = %o, Osa = zi .
<) The hypothesis to be tested is B3 = 0. The first step is then
to estimate 8, , 8, , £, by least squares. Then if o, = oo,

where ¢ can be computed from the g, . and by is the least
8quare estimate of g, ,
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has the F distribution with 1 and N — 3 degrees of freedom
respectively. :

Example 3. We shall consider again the one way classifieation
problem treated in Chapter 3. We assumed that we had taken
a sample of m@’s from the first clagsification, n, from the
second and so on. Denoting by z; the jth measurement in the
ith class we have to consider the following linear hypothesis.

Assumption

E(z) = u for &= L oev,s d=1,, PRGN

'\
The hypothesis to be tested i8 py = *++ = £ . The number
of independent linear constraints imposed by the assumption is
o4+ - +m,—s=n—28 The numben,éi‘ﬁnear con-
straints imposed by the hypothesis is s — 1. Towobtain Q, we

have to minimize Y,
4 ni ”2'\"'
(4.78) PIDNCTRP S
Let m; be the least square estm‘nateé of g: . Then
4.79) 'm'i:?% : fu"'.'j‘-_:'”ﬂgi-; i=1 ---,8
L3 ‘!im’\ .
Hence if ¥y, is %Qe‘regressxon value of s on jis 5 =< 5 Ha
we have
480) YAFz., G=1,--,s J= 1, +o M)
'\..

To 13?,\.1"11 €. we have to minimize > > (we — w)? which
vields( 8 regression value the mean = of all observations. If
fQ]\l}J\%s then from Theorem 4.1 and equation 4.1 that

P 3. k. — na’

- s—1 Ei Z;‘ (xii)g - Ei ﬂfx?-

is the likelihood ratio statistic for testing our hypothesis. _
Example 4. We shall now treat the problem of 2 2 way

classification. As an example suppose thab r-s pigs from 7
different races receive s different diets such that exactly ome

Masn



44

pig of the dth race (i = 1, -« | ) receives the Jth diet j =1 |
* 1 8. The purpose of the experiment is two fold. We want
to see if the pig races differ with respect to the weight gaing
and at the same time we should like to know if the different
diets differ in their ability to produce weight gains,
Our observations can be arranged into a matrix

a:11; rer ]xll

N
7
<
mrl]"',xr. %\

L _
where ., is the weight gain of the pig franih th race which
receives the jth diet. \ '
We assume now that the weight gah} ‘is produced by two -
factors, race and feed, both of which act independently of °
each other. Moreover we shall assiime that the z
and independently distributed all ‘with the same
Our linear hypothesig is.t!aéli ‘the following

€8 Bed =ue £+ 0 T = Duy =0

where .. is the ‘f@ﬂ'&t” of the ith race u.; the “effect” of the :
Jth diet, and » is\‘a Constant independent of ¢ and j.

To find Q. we have to minimize 3, 3, (z,, — 4. — =0
subject, tQ the restriction of (4.82). The conditions of theorem
4.4_are‘h{':wever obviously satisfied and we may therefore ignore
the resttictions. Thus if M., M., ,

m are the least square esti-
!I’lsa%s"gf Rioy fey , 1 we have

1
m=1'_sz.-2,-$“=x’

:; are normally
variance.



45
Thus the regression value Y, is given by
(4:83} Y;;. = T;. "l"‘ .y — L

We now apply theorem 4.2 and consider the sequence of
hypotheses

Hy: oy = pe st

(4.84) Hy,: H &p..=0,
H: H&H&p;=0 RN
N
It is easily seen that the regression values are ,\‘[}& g
Y&;) = T + z.; -, . 3.‘:\.'\'“
V
(4.85) YE =2, \
AT
{3} ¢ '\
Y",' = I. ‘,,‘\\'
Hence by theorem 4.2 . O v
gd. = E {zis — Ti- — T “'{f"@?‘
i SN
(4.86) \y

= o — 8 ~";.:x2#r (x., — 2)* — rsz’.
2 % | ZC"\(@ ) 2 (@ — )
For testing Hy (pii= b we have
(487 Q. - Qa\':';ﬁ': TATY - ¥ = s D lme — O

Simil_arl:y\ii'\c}r testing H} : u.; = 0 we obtain

o

(4,8823g§ Q- Qo =r 2 (@ — 2"

R
AReban further simplify (4.86), (4.87), (4.88) by means of (3.1)

\m;d applying theorem 4.1 we find that

G =D —-1 .
F: = r— 1

(4.89)
s 3 xi. —rsr’

'Ef,fxf,-ﬁsEx?—rEx?,-ﬂ—rsf-




and

Pl = r=1—1
s -1
(4.90)
Ty — e’

DD i T — 8 Y. — 1 I xy + sy
\

have both the F distribution and are the likelihood, "S&UO
statistics for testing the hypotheses H, : p;. = 0, Hj :
The degrees of freedom are 7 — 1 and (r — 1)(s _\1 or Fy ;
8§ —land (r — 1)(s — 1) for .

Problem 1. Find the proper statistic to tes DM = o
and H{; : ., = p.; in example 4. Hint; a;@gt\e corollary to

thecrem 4.3,
'“\
. .«\
NS
W
N
s:\,\
“‘:3.{ .
N\
{N\
&
¢.EN
L\
(' $
NS
N/
'\‘:,.2
4
&
/%“/
R\
3¢
NS
O~
L ]



CHAPTER ¥
Anclysis of Variance in an r-way Classification Design

TET US AGAIN CONSIDER example 4 of chapter 4. We had rs
quantities z;; & = 1, -+~ 734 = 1, -~ , 8). The observations
could be arranged in classes in two ways and z;; Was the value
ohserved in the sth class of the first and in the jth class of the
second elassification. RAY.

This idea can be generalized and we shall in this chhpter
consider r~way classification designs and their analysig for any
r. For practical reasons r will be limited to at mogt 4 or 5;
however, a general treatment of r-way classification designs
is just as easy as the treatment of special cases and we shali
give it here in all generality. D

To give an example of a 3-way elg:ssi}ication suppose that
we have 10 weather stations. The miean rainfall was recorded
by these 10 stations every monthin 5 suceessive years. Kvery
observation is then characterized by 3 numbers, the number of
+he weather station, the month, and the year in which the
observation was made. Fhs the observations may be denoted
DY Zaraaas (1 = 1, {H10; a; = 1, -, 12,85 = 1, -+, ),
where q, is the nuraber of the weather station, d. the month,
and a; the yeat .of phservation.

We may forCinstance want to know whether rainfall was
different, i /different locations or in different years. Differences
betweg?(different months are certain to be present.

'lfhgésé simple guestions do not however exhaust the informa-
tidnin which we might be interested. It is of interest to know also

{“Whether the combination of & certain location with a certain
Month has any bearing on the amount of rainfall, or whether
rainfall was unusually large in July of & particular year. Accord-
ingly we conceive the mean rainfall in one particular station dur-
ing one particular month and in one particular year as being
made up of the effects of station, month and year as well as of the
effect of the interaction of month and year, month and station,

47
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year and station and finally one effect due to the interaction
of month, year and station, Thus

E(xnlaaaa) = -”'(1: 2} 3; a; , dz , a:i) + l-‘(]-) 2; &, 32)
(5.1) + w2 35 ¢:, a) + u(1, 3; a, , a5
+ el a) + w25 a) + 4350 + th

where A o
¢\
21,230, a ) @) '

= E V‘(I) 21 3! a,, a, as) = Z p‘.(l, ?4"'3; .&1 ) Ga)

L1

f

!
; pliy , 4, 304, , @) = Z PIGN W a., , a;)

. ia iy p \ ),
= ; #(ty 5 a.) = 0, '\‘\
For .insta.nce #(1,2;3, 5) denpj:gis”ﬁhe effect of the coincidence
of station number 3 with monthinumber 5. The assumption ¢can
also be written as SN

Lo1850s = #(14'\;‘2, é‘; @, Ay, a§) + u(l, 2,4y, a)
, i‘!&?ﬁ, 350:, ) + p(l, 8; 4, @) + u(l:ay)
Fua) + uBsa) + u+ e

We shall<dssume that the €aieies are normally and inde-

pendentl}: tistributed all with megn value 0 and the same un-
knowk variance ¢2. '
X .'Q‘eneral_ly in an r-way classification we shall assume that

N

A Ez,. ....)

(5.2)

Gi@gdy

;n\:”,
= a;i) 1,2,2.:.'..,. 'u(?:l 1t ?:a-; Biyy oy G;‘a);
(5.3)
(a‘ = 1! Ty ta‘)]
Lig
a;lz-!. P'(?-z, T )?:k;ﬂ.“l, Tty an) = 01



49

where the second surmmation is defined as a constant ¢ when
o =08and Dy, wlin, v ta i Gy a;,) denotes sum-
mstion over all combinations ¢, , <+ -, ta chosen from 1, -+,
rwith 4, < 42 < -+ < fa . The quantity wliy ., oy T
@, <", @) is called an (& — 1)st order interaction. '
We shall denote by £(, , ~+- , % ;81 " , @) the mean of
all ghservations in class a, of classification 4, , class a, of classi-
fication 7, , - , olass a, of classifieation 4; and by )P
fe , -+, ko). The sum of all f(ky , <<+ , ka) for all choicesy

by < ky < - < kaoutofdy <idp < o <i,a<k &

We then consider hypotheses Hd, ..o : pld, , ,~e: ;

@y, .8 = O0foralla, -+, . We arrange fhése hy-
petheses into a sequence as in Theorem 4.2 in such'\a;ﬁ'ay that
. . . S .
higher order interactions precede lower order’\Interactions.
Interactions of the same order may be arrs.ngeQin any arbitrary
way. In computing Q, we shall first p t/the term resulting
from he Lagrange multipliers equal 0 0y It will then he easy
to verify that the least square estimates for the p's obtained
in thiz way always satisfy the restrictions 5.3 and that they
are moreover unigue solutipné,’ ‘of the minimum problem.
Minimizing N\

0= ):\L\

N7 2
:;\E E H(’il,"‘;'in;ah!'”!at‘u)]
.t\“ a=f 1,ve,7
under ’.ghé ﬁybotheses considered and denoting by A, * -+, a}, ;
Qi s 13N Ga) the maximum Hkelihood estimate of p(#, "+ * , %a;
agys- ¢, 64) leads to the equations:

%

\3 x(il,-'”aéc;ah:"',aia)

=Z z A(klr"')kﬂ;ah:'“:'aka)
A=0 f1,**"ia

fora‘]lilr e ,‘!:,fOl'WhiChp(‘a‘:z, -t :'ia y@&iyy 7T ,ﬂr.',)iS
not 0 by hypothesis. For a = 0 we have A = ¢ = mean of all

Q
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observations. For a = 1 we have z(h ; a,) = A(G, ; ) + 4
and therefore A(s, ; a,,) = z(% ; a;,) — 2. We shall prove by |
induction that |

A(?:l; e :’:n: iy, t ,G.-.)
(5.5) a
= 2D T alk, e ks e ) Gagh,
Assuming that 5.5 is true for all o’ < a we proceed io i{?&l}d\’&
S.5fora’ = @ + 1. We have O

L 4 ‘\“'
.'C(‘i1 Pty £¢+l HE P ; a-‘.ﬂ) ."~< b
D
x4 "M"\
= ) E A(kl.:“':k.S}ahJ'”Pa“)'
A=0 Tivereig gy \‘
AN
Hence 2\
.  { 3
A(%; | I iu‘ﬂ 1O, v P ::g’); +1)
»;‘&
= z(il E H t‘""’" ;"a:{i : e H al‘a +|)
& N ..::'
- “:Ze)"\\--;nhu-n Ak y ey ks e, , v !a"‘)
(5.6) \\~z
= x('ilzv" Ty ?:a+! 18y 0 : at’u-u)
."\.} i a I} .
> TERE Sy »
- \V tietrtida s yan ky ner kg
N
W\

\\ 'x(bl,"--,b,,;ah',---,ah)_
M\;?Ye compute now in 5.6 the coetlicient, of z(p, s cre o, by
;?h > ab")' Thetermx(bl P Tty b‘( 78y, e, ah) oceurs
In the last sum for every choice k, | kyyoon, ks which contains

by oo, b, . Out of the @ + 1 numpers Ty e, 4,4, there
are for fixed g exactly ’

(<7 oY) = g
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~such choices. Hence the coefficient of (b, , -~ , by ;G5 , " **
a,,) becomes .

> (—1y-(® b1 UE> CopfEt = ")

f=0
o+l—
— (__1)a+1—-r _ 21 (_l)ﬂ(a + 1 - ‘T)
5=0 B
- (__1)¢+1—-r- N\
This proves 5.5. o ;\"

We show next that the solutions in 5.5 satisfy the restnoﬁbns
in 5.3. This it clear for A(1; a,) = z(1; &) — z. We have by 5.6

A(li"':a"‘_l;al:"':anﬂ) ',,,'\"’
Gony b et lian e Geldl
_2 E A(klaf‘.rkﬂsah‘!"'!akn)-
f=01,- \

N/

Summing 5.6a over &, and appiymg mathematical induction

we obiain N
AR, et el Gan)
= .aff;\
= t1[$(2 ﬁ' 1' g, =" an-}-l)
P \ l’ -
"_\Z Z A(}‘;l;"':kﬂiaha"‘:aks):l='q'.
\ / B=0 2, :
by 5.4\
I@I}e followmg argument now shows that the A&y, *+* + %5
'“ﬂn , +.+, @) are the unique solutions of the minimur problem.

A Suppose we wish to minimize the quadratic form

Q = E e El:w("gl: SRR PR TR ,a.-,)

Ly Cf o

.3 2
—E Z “(k}!°”:kﬂ;a’h,'“:akn)]

f=0 [ PR Y S
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under the restrictions 5.3 and no further restrictions, The
solution to 5.4 which as we have shown satisfy the restrictions
are then the uniquely determined values for which ¢ =
Hence if we would write out the least square equations in-
cluding the terms resulting from the Lagrange operators we
should stiil get the same solutions for the Ak, , --- |, &5 ;
@, , " * , Oay) Sinee Q' can take only one minimum value.

We apply now Theorem 4.2 to our sequence of hypotheses
IfH,\ =H1&H2& e &Hﬁ_l&H(“,_..._.‘i) ,then :’\t\'

- . . ‘o)X
Y.E?.-l-)-‘ur - YC(IT),"'.ur = A(ﬁ'l vy b 8y, ).
In | R
E Z (Y”"” Ym p §a‘

each A(il e 1.7} 1Tty @u) OCC'IJT,S{%{ gr)/(th T t"l)
times, Thus we have by Theorem 4, 2 \ v

2 .‘ "
2 D @) (O
@y ar c".“&
r "3' e
ty - f
=X Tapter .y
(5.7) a=a 1.2.---.’»”1-'. Tt tfﬂ “iy Biz

N-(i’l y P r?fu :a'u 3 Tty aiu)]2‘
We replace now \h\the identity 5.7 x,,. o DY

ma‘ \’%)’"'
O\ ’ r
\i“\hmm _Z E F(T:la"':ia;ah;”"a"")
\ aml 1, a0,
g5@s ,
’\" El‘;'r[“l(ila"'ria;a’h)"'}a’ia)

it #(1:11 e 11:« 38yy y o ’a‘ia)]‘
But

s R .
A(h, ,1.-,,(11,-..,ﬂ.ﬂ)-_-[A(gl,...’ia;al’...,aa)

'ﬁp(‘ila"':iu;als"'!a")]
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are the uniquely determined values for which

v

x;l-“““" = Z E AI(?:I y V7" :'i_a FLU TP ,ai,).

amb 1, rin,r

Henge from 5.7 we obtain

Q= E E [9%..---...,
- Elz‘f,”ﬁ“”'".";ﬂ"""',a,-,)\]r‘".\
(5.9 (‘:}‘.s,
"g 1‘2:'.1- ;‘, E f,“‘ e t‘.a ...,}\\

[A(f'l y J_iﬂ 3%y "5"'\)\’&'“)
: Z \ g
- -“'(i‘i y T o ;a"'l:" e H aiu)lz-

Besides testing hypotheses pq;iderning gets of interactions
Wiy, o iaiGy e, Ga) fofalla,, --- , @, We may also wish
to test hypotheses which Soncern individual interactions. In
such cases certain sets of mteractions u(f,, -+, fuili, " s Qa)
will be assumed to béequal to 0 for all a; , -+, Ga .

We shall refer $o\such interactions as interactions of type I.
Other interactions'u(f; , -+ ,Ta 3825 " *" a,) will be unknown
for all a, , - €@, . These we shall call interactions of type IL

In onq.zitiéﬁ set of interactions, however, we may wish to test
hypotfieses concerning individual values of the set and we shall
call those interactions of type IIL. Equation 5.9 shows that
mim{ﬁﬁding Q.and Q, wemust put s(fy, -+~ ¥ai, "7 a.) =0
\ {0F interactions of type L and w(fy , <~ s %a 3@ """y Ga) =
Aty , +»+ e @, - , @a) for interactions of type 1I. We
then have to minimize for a particular choice ji, ==, Ji

2 et E[A(jli o rji;a‘l! e }ak)
' e

-yl o :jk_;aly Tt rak)]a
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with respect to u(j,, <« , 5 ;6:, -+, @) under the restrictions

Z#(jl;”'rjs; ,j;,-;fh,"' y Ee s '“:ak) = ()

L)

and eccrtain other restrictions imposed by assumption and
hypothesis,

As an example consider a three way classification and assyme
that all 2nd order interactions are 0. We wish to test\lthe

bypothesis that all interactions hetween the first and\séﬁond
classification are 0. The assumption. then ig QO

« \/
-

NN
!

R
=1, a =1 yla =1, -, &)

F(lz 2: 3: Gy, Gy, aﬂ) = 0:

The hypothesis to be tested is u(l, 2?;1 y @) = 0, (g, = 1,
ey b ey =1, - . The sitihber of linear restrictions
imposed by the hypothesis is_(h)— 1){&; — 1). Clearly & is
minimized under the assumption if we put p(s, , -+ , . ;
Qi y =00y Qi) = A(ﬁ'l,{.;‘j‘&, Ta}O1, "+, a, for @ < 2and
this solution also must.8atisfy the conditions of 5.3. Similarly
to obtain Q. we put, p(i, , -+ , 7, ; g I
Ay, - ,féa;q{»;}-- » o) foralt u(s, , -+ | 7, Sy, v )
which are nofiO,¥nder the hypothesis. This solution likewise
satisfies 5.3 Therefore

‘.\'3
pO% =T E U280, 0, 6,

31 2

:..\;

N/

O Q=0 +6 2, 3140, 20, , ap)]".

al !
" 61 oo

I

The F statistic for testing the hypothesis is therefore:

F==0— DG - 1)
h— DL -1

th Zﬂa Zu; [A(]-: 2: 31 a‘l i 15 3 as)f )
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Suppose now that under the same assumptions as before we
wish to test the hypothesis u(l, 2; 1, 1) = u(1, 2; 1, 2). To
find @, in this case we would have to minimize

(4@, 2:1, 1) — a1, 2; 4, )’

+ [A(lr 2; 1: 2) - .‘-‘(1). 2! 1; 1)]2
QS
+ 20 3 AW 20, 0) — WL, 2, oLy
%

“Gi=2 =1 P
\/
%

+ 34, 251, a0) — 8, 2 1, @
az=3 L

* \{: )
under the restrictions . \
N
E }..L(l, 2,01, az) =0, (a2’=}\l\; Ty 52))

>, 20,0 =0, oNa =1, -, 1)
where p(1, 2: 1, 1) = p(1 2,1, 2.
~\ .

It is easier to apply\the}coroﬂary to Theorem 4.3 to the linear
form u(1, 2; 1, 1)s— (1, 2; 1, 2). We then have to find the
variance of A(1,23d, 1) — A(1, 2; 1, 2). We have

A '
AN .
...\'{’ A(lr 2! 1} 1)

o ~'= x(1,2: 1, 1) — 2(1;1) — 2(2; 1) + %,
\”\, A(l, 2;1,2)

= 2(1,2:1,2) — 2(1;1) —«(2;2 T 2
AL, 2:1,10) — AQQ, 2;1,2)

— (1,21, 1) — 2(1, 2; 1, 2) + #(2; 2) ~ 2(& 1)-
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Remembering that the covariance between two independe
quantities is 0 we obtain

2 = 2
TLA(, 21, 13-401,2:5.2)] — Oz(1,2;1,1) — 20:(1.2;1,1);(2;1}

2
+ Tz(1,2:1,2) — 20’:(1,2:1.212(2;2)

2 2 e
+ Tz2:2) + Tz(2;1), N\
¢~ 4
LA
2\
P! = 9,2 (tl _ 1) e\
Trag,2;1,1)-411,2;1,2)] = a0 fs . \/
1 ¥
I“.k

Thus by Theorem 4.1 and 4.3 the F stg’r:i'stic'to test th
hypothesis u(1, 2; 1, 1) = a(1, 2,1, 2 ig 0

F = (tl — 1)(52 — 1)(53 —,:Q“" i
1 SV 26 -1

AL D - A 20,97
LJ{I(:‘E“» an [A(la 2: 31 4 ; Qo gy a-‘!)]

The identity 5.7 cgn‘_i;é' generalized to yield

,,Z\""?zi,?h“l P ta s, o, 4]
\

".:':: ul t - aa tu'
(6.10) @ =2 Y il s oy
o\:.‘: A=0 {1 ven iy t.h M t-"ﬁ [ g
z"\::' 2
'\“ -[A(kl,...)kp;ah}...,akﬁ)]

‘:":';\To prove 5.10 we note that Eltg, , -, Tag 3 @ry , 00, g
\"\, may be regarded as the mean of aJ] By, oo Gy, -, O
/' withfixed a,, , --- , q,, . Applying then the identity 5.9 to th
quant'ities 2, -, 4, 181, vt a,) Yields 5.10, since the
quantities A(k, , - -- v ke j ey, , - » Gxg) I 5.10 are defined it

terms of the 2(z, , --. 4, P, e, 0,).

To facilitate the computation of sums of squares of inter
aetions we shall prove
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; o ;;[A(ila"' )ik;a'ﬁ} e ;ain)}z

&

(5.10) o 1C R YD YEIRD DS
a=0 iayeer,dp B4, Bia iy 777 big

'[T'(jl P 1.’)'-‘: 3 &y y 1a3n)]2'

For instance

E o D4, 2, 350, a , ) \"}fl\"
Zgg[x(l 2, 3; al,ag,as)]\

— b E 2 =2, 3; az;m
~ & 2 2, 3 h( a)]’
P> Zai[xtla 2 o, 4P
+ tlzz“g el3; el + b, Z [2(2; an)]?
Tt Z [2(1; )] — titataz’.

We shall prove m‘r\by induction. We have

A% = 27, :\)Z [AG ; a)]” = Z [2(i, ; @) — )
i:\;?.\"' = Tl - b

O\
Sl}ﬁ%ose that 5.11 is true for ¥’ < k. From 5.10 we have
N
\:“ Z E[A(gls"':"’:k;ah"";an)]a

\ 4 o
(5 Z E[x(z,,---,%',,;a;‘,_---,a,-})]ﬂ
12)

_sz b E———”-EZ

act iasrieiz b v B B Cro

'[A(ki,- :ka y @,y 77" ,ah)]s.
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Applying 5.11 to 5,12 for & < k we find

E e Z[A(1'11° :I?:J\'- y @i 0 :aik).]z

a5, ®iy

E E[x('&l)"'}'ik;ah!”':a\'r)]g

@y 2\
. . k_l . LI 5 .l~
(5.13) - Z Z C” t“ E( ne- :\..
amd by, 00,0k YRy kg A=0 \“,
Z Z Z tk, AR\ , ‘\'
0 2R e v
'{x(jl y T Jjﬂ P G :,\\‘,’ ' a:‘#)]z'
The term "
: . Ot o &
[.’.B(j] y Tt s 18y, },:g' ™ a’iﬂ)lz -

g

‘ a3
occurs in this expansion a8 often as we can make a choice of
the indices j, , -+~ , 7, ‘out of indices &, , -+ , k, with 8 <
a < k. Since the iudiges j, , .- , j; are ﬁxed there remain
k - 8 indices, tel choose from. With & fixed there are then
a — # indices Yo \choose out of & — B indices. Hence for the
fixed « the téztn

\¢ t z
T 0 e

. '§~ E—
goours A

A -8

\\ " times. Hence its coefficient becomes

~Ze (T R (e o)

=—Z( (k7 8) 4 oa

(U= 0" 4~y
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Hubstituting this result in 5.13 we obtamn 5.11.

An important spocial case arises if in an r-way classification
design we do not take one but several observations in every
one of the multiple elassifications. SBuch a design may be treated
as an {r -+ 1} way classification design by simply numbering
the variables in every subeclass in an arbitrary manner. Wes
shall then be justified in assuming that the {r + 1)st clagsi®

fication has no effect on the mean value. Or p(’il REETI ?"+sl
iy 70, Gy, Geen) = O for all choices 7, < -+ < 4 '<‘r 4+ 1.
We then have from 5.9 ¢ ~.‘:
s
Q. = Z Z —3:Z PIDIRNS)
@=f 1. o iw 0y Gig Oril
\.

[A-(jl [ r.;"a et @iy \‘; aaaa’r+l)]

E E [x(lj‘.l!r-t-]- al)"‘,ar+l)]

v.‘#
3

61 D Pty
\ Tt r i
«2\J . 2
[A(Jl\{\ s day Biy 0 !a'fa)]
E \E[il:(l ',T+1;G1;"';Gr+1)]2

$ 0!1—1

w:"' L1 Z E [x(l . :.T; Q1,77 "'.'!"')]m

J\

"\' Z E[x(]- ';T)T-l_l;al:"':a‘r:a‘rﬂ)
\ ar +1
Hx(l el al:"';ar)]
Formula 5.14 is easy to interpret. Since the dJstrlbutlon of
e, . arars. i independent of a@.., by assumption we obtain
an estimate of the common variance from the sums of squares

of deviations from the means of the observations in e?,ch sut-)-
class. The number of degrees of freedom of this estimate is
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t -+ &(¢+1 — 1). The number of restrictions in our assump-
tion is easily seen to be the same number.

Problem 1. Under the assumptions leading to 5.14 derive the
F statistic for testing the following hypotheses.

Hi:  u(1,2;a,a)=0 forall q, , a, .

Hi: w200, 0) +6(l50) =0 forall o )

®)
A\
O
. \\/
AN
O
O
\S
O
QY



CHAPTER VI
T'he Power of the Analysis of Variance Test

Wz ARE CONSIDERING a situation in which we know spriori
that the cumulative distribution function of the random vari-
ables 2; , -+ , &, 18 given by a function

(6-1) f(xla ey E, By -'-,3,.). '\.\’

We wish to test the hypothesis that certain of the pa,raméters
8 have certain specified values which for convenience ‘we may
assures to be 0. ;

The hypothesis may then be formulated as follovvs
(6.2) H: b=+ =28, =§:

We test this hypothesis in the follewing way. Suppose it is
possible to determine a region W id ‘the n dimensional space
R, in such a way that the probabihty that a sample 2, , -+ - ,
z, will fall into W is a fixed constant o provided the hypothesis
H is true, in symbols Plz, 45+ , 2 C W|H) = o The
number o is ealled the lgwel of significance of the test or the
size of W. We then degide to take a sample z, , --- , 2, and to
reject the hypothesiiﬁlzf'if the point &, , -+ , 2, Iies in W.

If the point 2, -- , z. does not lie in W we either accept
H as true or maks further investigations. These investigations
may consist, Jutaking a larger sample if the distribution in the
larger sample depends also on 8, , -+ - , 6, . The fact that the
1'eglon Has a fixed size if H is true assures us that, provided
H 1s‘t1;ue we shall in the long run make a wrong decision only

,m d of the cases, where we draw a sample. This alone is how-
eyer quite msufﬁment to make the test valuable. An example
will illustrate this. Suppose o = .05 and we put numbers from
1 to 20 into an urn and test every hypothesis by drawing a
number from our urn. We reject the hypothesis # whenever
the number 1 is drawn. Otherwise we do not reject it. Obviously
the probability of rejecting H when H ig true is a = .05.

61
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Nevertheless the test is obviously of no value. The reason for
this is that the probability of rejecting H when #7 is false is
also only .05. Thus the test does not discriminate between H
and'situations different from H,

We shall denote by P(E|H) the probability that B will
happen computed under the assumption that I7 is true. Let.
us consider another alternative situation F’ and denote ¢he
point z, , - +- , x, by 2. Then

O\
(6.3) PeCW|H = a O
is called the size of the eritical region W and N
(6.4) . P(x CwW ! H") ..«:\\

is called the power of the critical regiony,"W with respect to
the alternative situation H’. The poweP(z C W | JI") is the
probahility of discovering that H. js"l%t true provided that H'

is true. It is thus a function of the alternative Z’. If

®8  PeCW|HNS'PEC W &)
for all regions W’ for wlﬁ,tzi; )
6.6) ReCW B =

then W is called @ most powerful region of size a with respect

to the alterndtive H'. If there exists a region which is most
powerful With“ respect to all alternatives then it is clear that
this regigils superior to 2ll other regions.

UIZIfQIt ately most powerful regions with respect to all alter-
naf\h(eﬁ do rarely exist. Thus the clioice of the critieal region has

t@be made on the basis of some tompromise prineiple. It seems
¢~ Tor instance reasonable to require that

N I: PeCW|H) >«
for all H’. A region
hiased critical i
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It may be seen from the foregeing discussion that a knowl-
edge of the power function P{z C W | H) = f(H') is indis-
pensable if we want to know what a test really accomplishes
and we shall, therefore, in this chapter derive the power function
of the analysis of variance tests.

In chapter one we have shown that the statistic ¥ is computed
from the ratio of two chi square expressions, _

N P O

X1 1 '\
o : N

Il

2 2 N
. + .- -+ e AN
x; = i a' Y 'M‘\\

where @, , *++ , Tu, ;¥1, **" » Y. Were assoined to be inde-
pendently and normally dJstrlbuted Va{w?bl&s with means 0
and variance cr Ifz,, -+, 2, haveYahance oy and 4, -+,
y,, variance o; there are two essenhally different hypotheses
that may be teﬂted by means of he' F statistic: the hypothesis
H, : ¢} = ¢, under the assumlatmn E(x) = E(y.) = 0 and
the hypothesis H, : E(y;) =\0 under the assumption 07 = o3
and Eiz;) = 0. We sh@ll be chiefly eoncerned with the hy-
pothesis H, .

In chapter TV %e\chscussed tests of linear hypotheses. In
proving theorem, 4.1 we have shown that the F ratio was
given by A&

7 =%§_§\’ 2= bt = oy oo ﬁi?_ﬂz_,
mwhi;:rg the assumption siated that
6.7 B@) =0, @G=1--,m.
The hypothesis to be tested was
©8) By) =0, (=1 ,n)
Thus the alternatives to be considered are of the form

(6.9) H . E(y) = 6.
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The critical region W for testing H was given by ¥ > F.
"T'o find the power of the test it is therefore necessary to corapute

" the distribution of

NN

VvV

ﬂ_yf.{_... + 44,
(6.10) . A

under the assumption that the y; are normally disbrif)pted
with mean value 8, and common variance o?. We then have
to derive the distribution of N

{ %

2 ¢/

6.11) =X )

X1 v

The power of the test will then be 'vi;}}T)y P(F' > ny/n, F).

Our problem will be solved if we find the distribution of #'.

For our evaluation of (6.11) it is ilieéessary to bring the Lnear

hypothesis first into the form. (6.7) and (6.8) by applying the
transformations discussed in'%he proof of Theorem 4.1).

In the derivation of the distribution of x* we shall need the

funetion I'(z) as definedin chapter one and the function
AN

(6.12) B(}om) = fa l £ — D" .

The T fitmbtion satisfies the relations T(n) = (n — DT{n — 1),

(L) .ﬁ;l‘,“énd I'(3) = 7% Between the T' and the 3 function
the,&llowing relation holds

566313) Bln, m) = L0 (@®)

P+ m-

To prove this relation we compute

1]

I{(m)Tm) = f 7% dx fw Yy et dy
. i}

— ={xtu), w—1 m 1
= €
fc fo &7y dz dy,
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We make the substitution

(6.14) y = u{l — 2), r = uz

Its Jacobian is #. Theregion 0 € 2 <2, 0 <y < i3 trém—
formed inic 0 < v <, 0 < z < 1. Hence

L3 i
T{(m)D{n) = j; e dufc 71 — " de

I

N/

T(m + n)Bln, m). \\

X
o

3

4N
\

This proves (6.13).
We proceed to derive the distribution of x™ “Qa\know that

* is the sum of, say, r squares of random va.nahfe Byttt B
Whlch are mdependent]y and nor;mally dlskpbuted with com-
mon variance s° and means d, , -+ , d. Tihe joint distribution
of 2, -, 2 is thus given by
019 g, ez = b [~ A D6 - ar]

(2m)&e” ¢S
Putti A
ing ..\
1 2
(6.16) \\ S 51 2 &
equation (6. lﬁ}ﬁnay be written as
x'\”'
?}(zl y T ,Z,)
(8.17) e" )
» ‘::;’:' = e ——— —— 2 —_ 2 gd“. ).
We now put
W =(X ™ Ezidi = Ez.-d.f ’
¥ ] i

(6.18)
W;=Eﬂ-.‘,'z,‘, (1:=2’--°,f'),
f=1

N
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where the matrix :
. . R 4

Qay - @y,
7=
G - a,, O\
is orthogonal and assume r > 1. We then have \\:\
EW) = (X a,
(6.19) ; !

EWy=0, =2 40
because of the orthogonality of 7' Furthetniofe
' w\/
1 . 1 4 A\,
xﬂ =;§ Ezf ~_—-;—§€W? .

Since T is orthogonal the W, apsa. iﬁdependently and normally

distributed with common varidince o and
. 1?",“‘_»
(6.20) W=
..\ v i=z

has the y* distribnﬁ;}n with (r — 1) degrees of freedom given

by {1.2). The j(.?hﬁ\aistribution of ¥* and W, is therefore given
by the density function -

NS/ ' ~-x
B W) = :

. 2y {r—32/2
—1)/2
o R/ (@) gt repg 11/2)e Oc)
z.\'s\Qd 1 172
R TERp L~ om et + WE — 24W.(20)7 ).
AN 2o
\\ " To obtain the distribution of
2
(6.22) Cox? = - + X
we puf, _
{6.23) X° = x'* cog? 9, W, = x’sin §
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The Jacobian of thig transformation becomes

cog® § —x"* sin 26

1. —_ [
x'c gin 6 . ox’ ¢os 8
= ox' cos @

and to the region 0 < x* <®, —= < W, < corresponds
the region 0 < x? <o, —7/2 £ § < 7/2. Thus the joint
distribution of %”> and 8 is given by the density funetion
—a RS,
Qx*, 8 = ¢ G N (1)
0 = G - m Y
exp [~ — 22NR sin B)].
If we integrate this expression with respect to.¢ from —m/2
to x/2 we shall obtain the distribution Qf;}x*’). To perform
this integration we expand exp [+ (2?\;(.{*}*‘&11 9] into & series.
Bince for m odd AV

(6.24)

N/

/2 »:':‘
f cos " @ 511}1":*9 dg =0

—x /3
we obtain N
/2 ...\\
cos” 2 @ exp [(2M¢™)"* sin 6] d8
© %) By \\
' ..':.:.’ = (2)\x’”)'” /2 r—% i tm
:C‘\ '3 = ”g -———-'——(2m)! n o8 f a1 [/} dﬁ-
We have $~\‘ft.\“
'\\“"!2 * oy (P23 /27, Him
R\ cos’? gein™ 0de = | (1 —u) W) du
R —x/2 -1
) '
\;s. _ f'l (1 _.U)(,._s}ﬂv?n—[‘lle dv
(6.26) e .

r—1 _1_)
ET

P — 1/29T(m + 1/2)

- (/2 + m
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On the other hand

2m)! = (2m)(2m — 1)...3.2.1

=2"ml2m — )@m — 3) -.. 5.3.]
_ 22“m!(2m— 1 2m—-3 5 3 F(l))
) 9 2 2 2 2
22m ! 1 ."\
= 11'1:?. I‘(m + §) ,’\\\’
7'\ -
Hence R
o ”.\‘ .«Z
f cos’ 2 @ exp 2%y sin 6] dp O
- 2 ’”‘3\
- 5 ()X e
N2 \‘}m!l‘(r/2 + m)

= wp(ie L S S i
A2 S S w2+ m)
Thus the distribution. of x’z‘.is;,;g:iiren by its density function

(627) 2 \& w S
- Arle) sz =, /2T
=76 e (- L) £ e

m=0

For A=90 equation (§.27) reduces to the 5* distribution 1.2 as
it should, lt?lS not diffieult g verify that 6.27 also holds for

—-A 2% (r—2y /3 2 {r—2) 12
PO, 1 = J_H(x_) (x
& %) G Vg 2

. o S~ A" /2)"
(e e) £ e
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We make the substitution

2 Gz s 2 _
X T156r X T14@

The Jacobian of this substitution is 2/(1 + ). Thus the
joint distribution of 2/2 and & is given by its density function:

z R G )(r—mzz( 1 )(,+2)12 —(2/2) A ;
9(2’6)'3 (1+G i+ D

(6.28) .
@ ( G )m RM(Z/Z) (r+=?a@:2112
' § [5G/ mite/2omre/2)
Integrating out with respect to z we obtaiﬂ 't.:he density of
the distribution of G. AN
_ w N G )(Hzm,_?l{?( 1 )(Hﬂ)f’i
P& = 20 (r L O\13%
(6.29) NP
AONY AT - 8172 + m)
Nt miT/2 + mT(s/2)

or on account of (6.1§)~$\

w\\")( ¢ )(f+2m—2uz( 1 )(s+2>/2 "
P@ = X \T1 @ T+6  om
©30)  NO
sendl
\\“\' '[B(z + m, 5 .

thF\., be the critical value of F for the level of gignificance «
~$0%that P(F > F, |\ = 0) = a Put r/s Fa = G, P. C. Tang
N AStatistical Research Memoirs V.2, 1938) has tabulated the
integrals

(6.31) foo P(G) 6, foa P(G) d6

for various values of ® = [2/(r + 1))} and various degrees
of freedom. This integral represents the probability Pr that
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we shall fail to reject the hypothesis Bouy = <1+ = g, =0
although it is false and some alternative 9,,, = ¢ '
0,4 = d, 15 true for which

_ 2 dl
A= 2¢°

1,...,

N
Thus one obtains an excellent picture of what the F tost will

accomplish, Tang’s tables must also he consulted if it. i deSired
to find the sample size hecessary to discover alternatives with
specified values of A with a given probability. <\
The evaluation of (6.30) and (6.31) requiresthe knowledge
of X and ¢® but we may use 5* < (@:)/s as.atestimate of o
The assumptions of a linesr hypothesisistate that the given
normally and independently di;%tributed\}a:hdom variables z, ,
" ", %, bave the same variance and méans g, y T, My Satisfying
the relations \%
(6.32) Z; Caitt; = {), ,gi’x"l, <o, 8), rank (¢,;} = 8.

NS

The hypothesis then states that

A\
(6.33) Z:CSH'. ,'\%.?0, G=1,, 9, rank (c;,- ) =3+

ce+€,i

Lemma 4.1351‘10’1;?3 that we may assume that the e,; are the
first r 4 \s’z;b% of an orthogonal matrix Hence

(6\3'&“\‘ : ; (-‘L'.' - #i)2.= Z‘; é C;;(-T;‘ - #s‘):r

~and therefore

. \¥;
’\\..

Y% (.5-35) Q-q, = ‘_il [ é c‘-,-a:,]g.

Suppose now that the alternative I’ siateq that E(z;) = .ﬁs«‘
where the &, fulfill the relations (6.32) but,

(636) ch+i.i;‘-i = d; : (?' =,y T); . Z d? > 0.



71

Then
(6.37) QO'ZA = Z drf L}_[ z}cup:] .

Comparing (6.35) and (6.37) we see that we may obtain
2 simply by subsiituting into the expression for @, — @,
the values u; for z; . This simple rule is particularly useful 3
since the alternative is mostly stated in terms of the meah,
values of z; and not in ferms of the linear functions (6. 33i of
these mean valunes. \

To illustrate the use of Tang’s tables we consider testmg the
row effects in a2 & by m two way classification dealgn (example
4 of Chapter 4). The assumption was formulated\in the form

(6.38) E(xy) = pe + p; +\z\\
with 2 ui. = 2. my = 0. The hypothesis to be tested was
(6.39) H:  un=0, ,.;(EI": 1, -, k).
We obtained N\ g
i
640) @ - Q. = ?i\;\(z‘ me= s R

Consider now the ahernatwe H':

(6.41) E'(a:,,,)\v 8+ i+ i, Za =0, 3 & >0.
N\ 7
Then E("\e) 9: + u, B(z) =
Applymg our rule we have to substitute in (6.40) for x:; the
pmsmon #; + u.; + p. Hence for z;. we have to substitute
\e >+ 4. Thus

(6'42) 26°h = m E ;.

The quantity

D I

= ka®

1
m
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‘ean be interpreted as the mean square of the row effects ex-
pressed as a multiple of the variance. Suppose for instance
that this mean square is .8 ¢® and that m ~ 5; then & = 2,
It £ = 4 then the degrees of freedom for Q. are (k — 1)
(m — 1) = 12, In Tang’s tables* we find that for 3 and 12
degrees of freedom respeetively and for & = 2 the probability
Pr; of not rejecting the null hypothesis is .463 if a 19, level'of
significance is used and .178 if a 5% level of siguifiearoe is
used. That is to say: If we use s 5% level of signifieance, we
shall, in more than 82 cases out of 100 reject the“hypothesis
b: = 0 (i = 1, 2, 3, 4) if the mean square of the’row effects is
at least .8 times the variance. O

Tang’s tables do not only give us verywaluable information
about the results to be expected from aBalysis of variance tests
but enable us also to find the number,of experiments necessary
to achieve certain resulis. Suppose for instance that we plan
a two way classification design\with, if necessgry, more than

1 experiment in each subelass, We wish to test on a 1%, level

of significance whether the\ifiteraction between the two classi-
fications is 0. We are

esinterested in alternatives for which the
mean square of the intéractions is at least .16 times the variance
and we want t%\@ké 2 large enough sample to uncover such
alternatives in, gé\east 50% of the experiments,
Qur assumption then is
AX

¢ \ “(l‘i 2! 3; ?:1 j? k) = ﬂ(_]-, 33 3.1 k)
N = 02,35, 8) = u(3; k) = 0
f@}i:l... bh;j=1 -.. b;k=1 .. ¢t B 14)
RRN » 3 H H H » T TR - I y(5.
AOR = X030 2T, 2 3 L g k) = z(1, 2; 4, ) with

) bl — 1) degrees of freedom. From (5.9) we find @, — @, =
fa 2 _Z:a‘ (44, 2%, )Y with (¢, — 1) {t2 — 1) degrees of freedom.
Thus if u(1, 2: t 3} = di; we obtain

20°) "_'-tt_! E E (d:)*

*The degrees of freedom of the nﬁmerator are, in Tang's tables, denoted
by fi ; those of the denominator by f:. The quantily B, = @, /(1 + Ga).
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and

N 2\
. (.51 - 1)(t2 - ].) + ].

B titots 2 2 (dy)’
T - D, — 1D +1 ity :

We are interested only in alternatives for which

Y2 G A

G‘ztll‘-z =

¢,2

ity Oy
(6 — Dk~ DEPH1-
Suppose now that f; = 2, ¢, == 5 then ® > .32¢, . We.ieﬁfoduce

below the relevant part of Tang’s table for f af&"and a 19,
level of significance. We find Py, as follows \

or & = .16

i3 ‘x’,\\:
fg\ 1.5 2.0 2.5

30 570 205 044

N

*ad

60 5004\ 1165 024 .

~

For &, = 6 we have ®° =M.92, f; = 50 and this would not be
enough to insure thag'U— Py, > 50%. For & = 7 we have
¥ =224, = 60 ahd P;; is approximately .51.

Although Tang’stesults give a good picture of the discrimi-
nating power Of ‘dnalysis of variance tests, the question arises
whether othéftests could not accomplish more than the analysis
of varian(@mest does. Generally one does not know the alterna-
tives and'it is not possible to maximize the power with respect
10 every possible alternative. Therefore it will be the aim of

\”%e" Tuvestigator to maximize some average of the power. A
ald has shown that the analysis of variance test has such an
optimum property. (Ann. Math. Stat. Vol.13 #4).

In Chapter four it was shown that tests of linear hypotheses

¢an be brought into the following form. The variables

Tiy ooy B Yoy "y Ua s Yerry " 5 Wy
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are normally and independently distributed with common
variance o°. It is known that E(z;) = 0, i = 1, --- , r). The
hypothesis to be tested is

The critical region W, in the analysis of variance test is
defined by

O\
2 2
_Mp_nt oty
(644 R LT R

That is to say the hypothesis (4.43) will be rej eeﬁ)g&"}f G >C
From (6.29) we see that the distribution of Gepends only on

. N\
A= g% E 6;
1+ ) \ \
AN
where E(y;) = 6; . Hence we may denote the power of the
region (6.44) with respect to the: alternative

By =0, G=1---, 95 Bl — 67 = Bl = ¢
by Po(\).

Let W be another cﬁtidﬁl region and denote its power function
by

A\
'\i‘,;’ P(Gl: ”':Bn:a)'
Consider‘na in the p-dimensional space z, , - , % the

suiface 8 defined by
U S o P T S B

'\~
{I@t P, 0, 8i01y -+, 8,) denote the average power on the

;@urfa.ce defined by (6.45). That is to say

‘I—)(AJU) 8”-1.,"‘ ,3,,)

-_-(LdA)_lLP(zl,....Jz.’gsﬂ,... .8, , o) dA.

Wald proved that for all W of the same size as W,
(6.47) P(\ o, 8

(6.46)

PSR )69) S PU (l)o



75

e test is higher
urface (6.45) of

\ A then P(A) =

stained by P. L.

e scope of this
e taken as a full
unee in testing a
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CHAPTER VYII

Latin Squares and
Inconiplete Balanced Block Designs

SUPPOSE THAT m VARIETIES of wheat are to be compared asdon
their mean yield on a certain type of soil. We have at, our
disposal a rectangular field subdivided into m? plots. I‘I\éi\'eirer, ,
even if we are careful in the selection of our field,, diffcrences
in goil fertility will occur on it. Thus if all the plots el the first
row are oceupied by the first variety, it may very well be that
the first row is of high fertility and we niight obtain a high
yield for the first variety although it is\hot superior to the
other varieties. We shall be less likely/fo vitiate our compari-
sons, if we replicate every variety‘oﬁe‘e in every row and at
the same time randomize the pogition of the varieties within
the rows, We might for instanpeitafce m eards with the numbers
1, --+, m on them, shuffiesthem well and then Iay them out
in a row to determine the\position of the varieties in the first
row. Repetition of thig_process will yield the position of the
varieties in the second row and so forth. An arrangement of
this type is calleﬁga, randomized bloeck arrangement. A mathe-
matically rigorous treatment of this arrangement is at present
not yet available. An approximate test of varietal effects is
possible bystreating the arrangement as a two-way elassification
design ignoring the variation of soil fertility within the rows.
Weshall discuss this design in detail in Chapter XIL. A better
Dlax will he the systematic elimination of soil fortility differ-
oences, which is preferable to randomization and should be
\“ applied whenever it is possible. It yields in most cases more

efficient estimates of the variesal effects and has the great

ag;ra,ntage that a mathematically rigorous treatment is avail-
able.

The line of attack in oyur partieular example is as follows.
We conceive of the mesn yi

. . eld E(y:;) of the kth variety on
the plot in the ith row and jth eolumn of the field as given by
76
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E(yiu) = we + v, + oo + p,

Shi= Tn= N0

(7.5

This assumption is for Instance always satisfied if the soil
fertility is a lincar funetion of the coordinates, an assumption
which is likely to be true if the fleld is not too large and is
homogeneous in appearance. The quantities g, , »; , p. are
called the row, column, and varietal effects respectively. The’)
design is called a Latin square if every variety is planted {once
in every row and once in cvery column, The expecteédwalue
of the mean yield of the kth variety in our experilgeéit is then

by (7.1) equal to Q)

1 ' \

P Z EQyin) = p + P,:'.\\'

. ] ..\ W
where the summation runs over all paiw*, j for which ¥, is-
defined. Thus o\
Logd
Yo = “'E Yiix

L

provides an unbiased estimnate of p, + p. Since every variety
oeeurs once in every raw.and once in every column, the mean
y of all yields prowides an estimate of p so that the varictal
effects p, , (k = Iyt | m) ecan be estimated.

The assumptiduof our linear hypothesis is therefore that the
Vin are 110}2{@,1‘137 and independently distributed all with the
Same but Wnknown variance ¢* and that their expectations are
&iven b(7.1). Note that as soon as ¢ and 7 are fixed k is de-
terg;n@ea by our design. The parameters wiin = Ey;;) are
\tikgressed by the 3m + 1 parameters »; , g, ps, G, 7, & = 1,
,m) and p. Howover, these parameters are not independent

Binge
Shi= Nn= Y=o
% H &

3m — 2 independent parameters and @, will
— 3m + 2 degrees of frecdom. The hypotheses

Hence there are
therefore have m?
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to be tested are manifold. In the first place, we might wish to
test whether the varieties differ at all from each other, we shall
then test the hypothesis p; = 0 {f = 1, --+ , m). Or we may
wish to test the difference between two vanehes, say e, and

p» - The hypothesis to be tested is then o, = p, . Also we might
wish to test whether the rows {or columns) have a,ny effect."
We then test the hypothesis u; = 0 {orv; = 0), £ = 1, ,nE) \
and so forth. We shall first derive €, . The design obuo’ugiy _
satisfies the conditions of Theorem 4.4 with respeet to-ench’of
the three sets of variables u; , »; , pr . Hence in ﬁndzng Q, we

may by virtue of theorem 4.4 ignore the restrmtlbns m {7.1).
Minimizing m\‘

Z Z Wise — py — ;-f\.\gk - P)z
\\
with respect to u; s Vi Pr g P and denotlng our estimates of
these quantities by p; , »; , ;e J»p we obtain

F E Eym‘ =1
A,\\=i ’kyi:‘k—y"—% - Y
(7.2) A
R M
:\\’\: ¥ m,,,y”"_y“_y’ -

. 1 .
px='m‘§y«fe"y=y..k—y.

Because for instance the 7th row contains every variety and

every column exactly once so that the varietal and the column
effects will eancel out. Thus

{1.3) Q. = 2‘ Z{‘, Weie = Yiro ~ Yoir ~ Youg + 2"
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We now apply theorem 1.9 taking JI, equal to the assumplion,
H,: pe =0 (=1, ,m}
He: vy = 0(j=1,---,m)
H,: pkzoiiﬂzrl,---,m).
Then
Y= 0, Wae = Yoo = Yo T Yo + 2y’

7%
- R
+om oy — ) oy O *

The same decomposition ix also obtained, ho“e\\"\‘\ if we re-
number the hypotheses 1. , M., I, . Thuss Lh(, hypothesis
H, g = 018 10 be tested 1y \:\
F = .?13‘_2__—_.___3?” + 2 O
m — 1 A
(74) N
m 2y my

. E E‘yin — ml 2 yI\ -+ E g Yyl 2m’y
¥ 1 1 \ &

1

The expressions for té m\é row and column effects are entirely
analogous. To test, ’slle hypothesis p, = p, we apply formula
(4.64). We}l&‘v’ﬁm P2 = Yo — Y. . NOW y.. and y.., are

independent gfiahtities each a mean of m independent ob-
servatio s,‘thus

\\ 2 2 _ 02
\ Gy... = Fy..n ™
x“\" . T
@d%herefore
2 24t

L _m .

Hence to test : p, = p, we have %o use

(7.5) P —3m 42 my., —y.p)
1 2Q.

¥ 4 N\ ¢
Ay

u PN 4
o S (e — w2 e = O

N\
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Similarly if we test H: p, = 0 we have first to compute the
variance of p, = y.., — y. We have :

= _ 3 2
Tlgorampy = Oy, — 26:«-.1» + Gy

2(1 2 i)_ii.m_l
=aﬁ_m2 mi) T m .

Henece O

m — 3m+ 2 m (y., — y)° O\

78 . F= 7 m—1 a. S
is the likelihood ratio statistic for testing H: p, = INY _
The treatment of experiments set out in, several, say r, -
replications each of which constitutes s Latin}quare does not
offer any particular difficulty. The observa.tions may be denoted

by yii where 1is the replication numberyThe assumption states

AN
Byin = g 4,0 e + ag + 4,
EM‘E” = EI’E” =?j~’§ Pr = Zam = 0.
i o H .

The number of independefit [;ara,meters is

(7.7)

r(m(="1) for row effects,
\7{m — 1) for eolumn effects,
" {m—1) for varietal effecis

N

H

PAY; r—1 for replicates,
\;\ ¢ 1 for mean.
Hénee the number of

degrees of freedom for . becomes (m — 1)

It is often possible to te

5t at the same time other effects on
the yield, for instance we

might be ahle to apply m different
fertitizers and to construet g dESIgn which forms a Latin square |
with respect to fertilizers and varieties each and has in addition

to this the property that every fertilizer is applied exactly once

to every variety. For m = 4 one could use for instance the
design
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vf1 vzfz vafa . fs

v2f s Uifa vsf1 ‘U'sfz .
i’af 4 ”4f 3 ﬂlf 2 %'zf 1
U-;f 3 vf1 2f4 o fs

where v, , v, , ¥5 , v, denote the 4 varieties, fi , f5 , f3 , fs denbte
the 4 fertilizers. : a\

This ides can be generalized to test the effects of ’n,’d‘ifferent
categories of conditions for each of which thereoﬂapé m possi-
bilities. We then need designs with the followibg properties.
There are r different letters. Each of thesé\Jetters occurs m
times with each of the indices I, --- , m.They are to be ar-
ranged into a square, divided into mix’glibsquares, in such a
way that the indices on each letter foto’a Latin square and so
that each pair of letters occurs with éach pair of indices exactly
once in one of the subsquares. A'design of this type 18 called a
set of » orthogonal Latin squafes.

The analysis of these desighs is entirely analogous to that of
the Latin square desiggg*l‘he"'required F statisties can easily be
obtained by apply'ng:‘Theorem 4.1, _

I the assumptic])}s made for the analysis of the Latin square
are justified then-the Latin square is the best design for field
experiments{ ‘Which is at present available. However, it is
neeessary@n\é Latin sqiiare that the number of experiments on
each Watidty be equal to the total number of varieties in-
vestigated. Thus if the number of varieties is Iarge the number
offeplications becomes likewise large. This means not on_ly an

_“widuly large expense for the experiment but also necessma.tes
the use of large blocks, so that the assumption (7.1) which
underlies the analysis of the Latin square is not even a,pprolxl—
mately fulfilled. We shall therefore discuss other designs which
take care of this situation.

Tf we plant the varieties in relatively small blocks we may
assume that the soil fertility is the same for each plot in the
samne block,



82

Thus again making the assumption that the mean yield is,
linear function of varietal effect and block cffect we have

(78) E(y.-,-) =+ b + Hy E v; = E by = 0,

where y,, is the yield of the experiment which censists in plang-
ing the ¢th variety on a plot of the Jth block. Applyi\ng the
likelihood ratio principle to the linear hypothesis (7.8) Wweyhave
1o minimize - Y

(7.9) Q = E (y” -, — b; _ 'u)zr.?,‘.:«.

2 m,\.\ ‘
where 3, ; runs over all pairs ¢, j for swhioh the sth variety
oceurs in the jth block, with respect to2y b; and u under the
restriction 37, v, = 2 b =0, Mihimizing Q and denoting
least square estimates by carets Iea;d}to the equations

Z Yy = E '-‘"iﬂ,;:l'z k,—g,‘ + iv;;

(710) V‘- = 'F:,ﬁ,:"F‘ E(.‘) 8,‘ + 'f'i;;
Bis 396, + kb, + kip
since by Theox:em'}}ﬁ the restrictions v = 2. b; = 0 may
be ignored. In 10)
RZ denotes;thé sum of the yields of the sth variety,

B, denotg}e the sum of the yields in the jth block,
T dg;{?:,ﬁﬁ the number of replicates of the sth variety,
k,;{ke;mtes the number of plots in the Jth block,

L b denotes the sum of the effects of all blocks, which con-

N - tain & plot, with the tth variety. .

Iy, denotes the sum of the varietal effects of all varieties
that ocour in the Jth block,

¥ is the number of experimentsg,

In' order that such design be really useful, the following
réquirements musg bhe fulfilled: |
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2) It must be possible to compute the solutions to 7.10
within a reasonable time.

3.) The estimates of the varietal effects should be reasonably
aceurate.

The 4, and b; are linear functions of the observations. Hence
if the y;; are normally distributed, then each 8., b, , & will ,
be normally distributed. N

The size of the resulting confidence interval for v, is_them
exactly proportional to its standard deviation. The requirement
3 is somewhat vague. Suppose cvery variety oceurs¢the’ same
number of times and it would be possible to ca,rr.ylbut an ex-
periment in a two by two classification accord‘i}g to blocks
and varietics with a complete replication '{yevery block. In
such a design the estimate 8, would then hayea certain variance
¢*/h. Suppose the variance of #; as eomiputed from (7.10) is
o /c; . Then ' OO

(7.13) e =

=4y

N

¢

is called the efficiency fddtor of the design leading to (7.10)
with respect to the psthnate #, . The efficiency factors with
respect to varietal ‘differences are defined similarly. Clearly if
there iz a choicg between two designs one of which is more
efficient tham\the other whilst both justify the assumption
7.8, then theexperimenter will choose the more efficient design.
Vaa‘i@{};?designs have been constructed which satisfy the
requiréfnénts 1 and 2 and the requirement 3 to a fairly satis-
f?*.\cﬁqu extent. The best of these are the incomplete balanced
~block designs., These are available for certain combinations of
the number of varieties and number of replications.
_ A balanced block design is an arrangement of » varieties
into b blocks of k plots cach such that

1.) No block contains the same variety twice.

2.) Every variety is replicated r times.

3.) Every variety v, occurs with every other variety v;
exactly A times together in the same block.



84

The total number of experiments is bk on the one hand and
v on the other hand so that

(7.12) bk =72

Every variety #; occeurs i r blocks. These r blocks contain
r{k — 1) varieties different from #; . Since every v; # v, ocours,
among them exactly A times

O\
{7.13) rik — 1) = Az — 1). o\ N

Equations 12 and 13 are necessary conditions fgx the existence
of a block with the parameters b, v, r, k, . Another necessary
condition for a design in which not every v’ég\*xety is repeated
in every block iz

X.\\:

(7.14) b2o (¢

The condition (7.14) was first pi-évéd by R. A. Fisher, Ann.
of Eugenies (1940) 10 pp. 52-75,,and will be derived later. The
conditions (7.12), (7.18) and\(7.14) are not sufficient for the
existence of the design. Thus for instance the design» = b = 43,
7=k =7,X = 1is known to be impossible. In fact necessary
and sufficient conditiohs are at the present time not yet known.
Various meth(:ﬁ’\’fei- the construction of incomplete balanced
block designs " be given in the next chapter.

We progeed’to discuss the analysis of balanced incomplete
block deslgris and note first that in 7.10 7, = 7, k, = k. Hence
on afx'{lh’lt of 25 =2, b; =0 7.10 reduces to

'."\\ Z.:« Yu = T‘W:,

&

)
\\‘ A Vi=r+ 20 b +m,

o

*

B; = 399, + kb, + kp.

We_ put T, = Eu_) B; = sum of the totals of all the blocks
which contain the ith variety. Summing the third equation in
'+ (7.15) over all blocks containing the ith variety we obtain

(7,16 .=k E(i) E:‘ + (r — N, + rk;
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since 2_; §; = 0 and since every variety different from v; occurs
in the sum X times whilst v, oceurs 7 times. Multiplying the
cecond of the equations (7.15) by k we obtain

(7.17 BV, = k Do by + ks + rki.
Subtracting (7.16) from (7.17) we get
(7.18) (rk — r + N8 =KV — T, .
Substituting from (7.12) and (7.13) O
m—r+x=ﬂkfn+x=x@—n+xaw;"
Hence P f‘
;;' =Y \":}\\
@19 b= = (ke — T, o
A \s
B = ip Ry E(”.(jc:x;*’.;.. TY — ¥
i k H )\kv ‘.,::':‘ L3 13 .

We ohserve that (b — 1)1?;p"a.nd 7, — V. are independent
quantities and therefore . N

e A
g” KON’ r
(7.20)
&7 k=1 _ ke — 1)
A A U

' M
W&Qwﬁr apply Theorem 4.2 to the sequence of hypotheses
B B = vk bk s o= 0G=L ),

Q~ Hy: b=0(i=1 -0
Then
1 3 1 [§] §
Q. = ‘;y";-EEiB,‘— ‘Z.;(ﬁ,._}éz w,—),

(7.21)
Q.

1 2
‘E"yff ‘EEjB, N
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On account of the conditions of an incomplete block design
the expression for @, — @, is symmetric in the », , =17
-, v). Hence by Theorem 4.5 and on account of 7.20

X
Q-Q=726,

{7.22)
2 1 2 A 2 N
Q. = ‘Z.;ys.-—ng:B;—};Z‘,:ﬁf '..\“.\

£\
To carry out tests of significance for the hypo;hgs_}s v, =¥

?
it Is necessary to know the variance of §, — #; +We have
€

(7.23) Fricss = & + ol = Do)

Now ¢, and d,— are given by (7.19). Counting the observations
common to thel terms in (7.19), we ﬁmsl no common observation
in ¥, and ¥V; , A common observations in ¥, and 7, or V, and
T; and kx obsetvations oceurring 11 7 as well as in 7' . Thus

No0us, = (RASEA + BNo? = —Kag?

and therefore ' N

2 \ 2kp — 1) |, 2k 2k
7.24 Tocgriyy 200 — 1) 2k 2%
(7.24) Pl v B

Appiicatioq..qi the corollary to Theorem 4.3 then yields the
proper test,statistic for testing the hypothesis v, = v; .
To "Ii\l'}}i"the efficiency factors with respect to ¢, and 8, — &
we haye to compute the variance of the estimates Py 80 — b
jnfa Wo-way classification design with r replications and these
vare easily found to be vy — 1/rv and 2/r respectively so that
“\\“in hoth cases the efficiency factor i Av/rk. This is mostly quite
satisfactory, as for instance in the designs

@51, kN = (16,24, 9, 6, 3), (8,14,7, 4, 3),
(11, 11,5, 5,2  or (21, 21, 5, 5, 1).



CHAPTER VIII
Galois Fields and Orthogonal Latin Squares

It was sErN IN CHAPTER VII that the analysis of sets of
orthogonal Latin squares and of incomplete halanced block
designs offers no particular difficulty. The construetion of
these designs however leads to very interesting combinatorialy
problems, some of which are not yet completely solved. { >

A Latin square of side m is an arrangement of m let:té};s mto

 m® subsquares of a square in such a way that everfhtow and
every column contains every letter exactly once:}‘fwo Latin
squares are termed orthogonal if, when oneJs Superimposed
upon the other, every ordered pair of syl;lbblé occurs exactly
* once in the resulting square. Thus the Latin squares
A B C aBly

B C A’:'"y a B

¢

C 5("3’ B v «a

are orthogonal. Thef Sroblem of constructing, for instance, &
set of r orthogonal\Latin squares of side m could be regarded
a3 solved if* we &ither can give a method by which such a de-
sign can be gbnbtructed or are able to prove that the design
cannot e}dsb;f}his problem is at present still unsolved for many
combingtiens of r and m. Various methods have been dis-
covered however for obtaining solutions in a great many cases.
In¢ fact, within the range useful in the design of experiments,
Yih‘e solution has been obtained for most cases with only a few
exceptions. The experimenter will usually not go beyond 7 = -
13. The problem of the construction. of orthogonal Latin squares . .-
within this range is solved for m = 2, 3, 4, 5, 6, 7, 8,9, 11,13, "
That is to say, (m — 1) orthogonal Latin squares of siqxe mo
can be constructed form = 2, 3,4, 5 7, § g9, 11, 13 while it "~
is proved that no six-sided orthogonal pair exigts nor mor :

87
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than (m — 1) orthogonal Latin squares of side m. An orthogonal |
pair of side 12 can be construeted, but it is not known whether
a pair of orthogonal 10 sided squares or a triple of orthogonal
12 sided squares exists. :

To understand the methods by which orthogonal Latin |
squares have been constructed we need certain clementary -
concepts of algebra and of the theory of numbers which willde. '.

developed presently. A
1. Let a, b, m be integers. We shall write N
®.1) a = b(m) Y

in words, a congruent to b medulo m, if m dividés a — b. Such .

congruences can be treated like equatijns,’ For instance if |

a = b{m), then a =+ ¢ = b % ¢(m), ac= be(m). The proof of *

these two propositions is left o the{fea\der. If also ¢ = d(m),

then a¢c = bd(m), ¢ & ¢ = b =+ d{wm). o
Proof: According to our deﬁn;'ﬁiah we have

@ — b= Anm, c“—vﬁii, — Aottt A1, A integers.
Hence ac = bd + m(?\zi::;l- Md) 4 Mdgm® and therefore
(8.2) A8 ae = bd(m).

The relation gﬁ}c = b + d(m) follows in a similar manner.
The rules\fdr division of congruences are not so simple. We

.i_ "shall prové-however the following rule:
If ag}é be{m) and t = ‘(m, ¢) 18 the greatest commnon divisor
(QQ‘}}') of m and c then :
E RN o '
A 1 18.3) q = b(——T)
\ ) Proof: 46 — be = ) %{\
- roof: ae — be = Am, A integral. Henee 1
R '
(8.4 a—-p=2R_2 m
e ¢/t i

The left {iide c_)f (8.4) is an iﬁteger. Since m/¢ and ¢/t are integers
and ¢/t is prime to m/t, it follows that A is divisible by ¢/t
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Hence M/ (¢/1) is an integer and m/t divides @ — 5. In particular
it follows that we may divide a congruence by any number
which is prime to the modulus. If m is a prime number p then
we may divide congruences mad p by any number e such

~_that ¢ # O(p).
-+ In the following we shull always caleulate mod p. That is

to say, we shall replace every number by its smallest positive
" residue mod p. For instance 4 -+ 2 = 1{5), 2.8 = 1(5) and
go forth. K N,
Let p be a prime number and form the following ('lesigti*.~

7
<

0 1-op—1 A
j 145 p—145

BOL= 2 142 p=142 o j=1,- p—1

&\

@~ 1)j 14+~ Dj - s )+ (p— 1)1,

All n;mll}ers in'L; are re{%ﬁeed mod p. We shall show that L;
;s ah atin square. I@is were not true, then since only the
r::: ct:s Oi I, e 1 oceur in L; , we would have some
tho it iz ‘;]mn.lil.‘Whmh one of the smbols oceurs twice. If
oot 'ccrn“teams the same number in the kth column and
e ﬁ&cq!ﬁnn we should have
o\l .
k414 =r+ ip),
¢ \’~ 3
\™ k = ,_,.(p)
similar g .
nimbe exactgumly Oir::t srllz‘gws that every column contains every
Square. We ghall he- us Ly, (7 <L, p = 1)is aLatin
this wore, Show now that L, is orthogonal to L, if 1 j-
" peir of numbmt the case, we should have the same ordered
- Which fesultse;:og?cumng in tf"’f’ different, boxzes of the square
3 Superimposition of L, on L; . Let mn be a

oy

Q"
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pair which occurs twice and assume that it oceurs in the oth
row and Sth column and in the vth row and 5th column. Then

BHai= 8+ i = mip),

B+ ai=§+vi=n.
Hence '

ali — ) = (@ — H). O

. 7'\
But —p < (¢ — j) < pand (¢ — 7) is therefore prime to p.
We may therefore divide by ¢ — j and obtainlaly= +(p),
8 = &(p). : ...'\"
As an example we present a set of 4. oftbogonal 5 sided

sguares.

L, L L

G ;

01234 01234

w\,/
N
¢ L,

01234 01234

=

12340 23408 34012 40123

23401 4{}”123 12340 34012
+8 J

34012‘\1’2340 401238 23401

40:1‘2"3" 34012 23401 12340

It Wgzbﬁmider the properties of the system of residues mod p
wh§h~ were used in constructing the L; we note that, partie-
,q{’ar ¥, the uniqueness of the division was necessary. Because of

¢~ the uniqueness of the division the residues a, 2a, - -~ , (p — 1)¢

/7N \
\
\ 3

are {p — 1) different residues all different from 0 provided
@ # 0(p). Hence one of them must be the residue 1. Thus to
every residue @ # O(p) there exists a residue g~' called the
inverse of @ such that a-6™" = 1(p). '

From our method of constructing m — 1 orthogonal squares
if m is a prime number, it may be surmised that we can always
construct m = 1 orthogonal Latin squares if we have a system
ﬁof m elements satisfying the following eonditions.

Q.
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VT every pair of elements a, b in § there exist two uniyuely
defermined elements & + b and a-b in §. The “addition” and
“multiplication”’ satisfy the following condetions:

La+b="b+4aq, ab = ba, The commutative law.
I e+ b8 +c=a+ b+ ¢, {ab)e = a(be), The
associative law, O
IH. There exist two elements 0, 1 in § wuch that :"\t\’
N\
a+0=a -1 = a ,“‘}:“'
Jor eve_v:y ain % ,\‘Z’;
IV, To every a 5= 0 there exists an cloment (— a) aﬁd}an element
& such that A

&6+ (—a) =0, (L-a."’}\; 1.
The element ™" is called the inverde of o.

Voela+8) = ca+ cb,  Thelfistributive la.
A system satisfying the postulates 7 — V iy culled a field, If
g;fdm'lmflj)el: of elemejnt.s,' which we shall eall the marks of the :

: T II;&B bmte, then itGs ealled a finite ficld or a Galois field. -

i 11]-‘; e remacf'lffegl“:tha-t the commutative law of addition,

g, 1 the field Aitite, also the commutative law of multi-
Plication need J{OIJ"be Postulated,

I'Etgﬂ-r“gi:gr: 1,9’2,

» §m—1 be the clements of the fini
ﬁdd%@\i\fﬂf’m the designs: 1ts of the finite
:'\‘.‘kau 1 o
"'\s.t

3 :ﬁf’?g. g:+1 e gi+§’m—1

9_’;92 gig+1 ... Gigat+
E {8.6} - 2T w1

9’«{,?":-1 Filmy+1 - gigm-1+gm—1 .




e\

\ 18 10 integer p for which -1 = ¢ then the field is called a field

N\
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Then by exactly the same argument that was applied in thef
case of the field of residues mod m we can show thut Ly, - ,*w
Ly.i 18 a set of m — 1 orthogonal Latin squarcs. Hence wel
have

TuworEM 8.1:If go = 0,9y = 1, g, , -+ , g,y are the marks.
of a finite field, then the designs L of (8.6) form a set of m a1
orthogonal Latin squares. O\

In a field § the following propositions hald: O

Proposition 1: a-0 = 0 for every a. N

Proof:a = a{l + 0) = o + 4-0; adding (7%¢) to both sides
of this equation we obtain Proposition 1. .\

Proposition 2: ab = 0, ¢ = ¢ implies b3500.

Proof: This follows by multiplying ata 0 with ¢ ".

We denote by m-z where m is aninteger and x u mark of
& the sum of ma’s. We then haye ™\

Proposition 3: If m s an iteger such that m-1 = 0 then

mew = 0 for every . If ma5"0 for one » 5= 0, then my = 0

Joroll 4 in §. '\ .\
- Proof: If m-1 = 0.gheh mz = (m-1)z = 0z = 0, Also if |
my = 0 then mz ={tm-1)z & 0if ¢ 0 then by Proposition”
lyn-1 = 0 and, therefore m’y = 0 for every . :
*Proposition, 4\Let p be fhe smallest positive integer for which
Pl = 0 fhenp is a prime, {Such an integer need, of course, _
not exisho\
Prooﬁ\Suppqse P =mnom < p n < pthen mal =
(m\@.n-l) = 0. Hence either m-1 = Qornl1=0 contra-.

dieting the significance of P.
% The number 7 is called the characteristio of the field. If there

of characteristic 0 anq is Dhecessarily infinite because the ele-

ments n-1,n = 0,1, --. ad. inf, are then all different.

JTaEOREM 8.2: Fhe number
power of iis characteristic p.

of elements in a Galois field § 45 ¢
a mark w, 3 g-1forg = 0,
Taw,, 8, =0,1,.--,p—1

5 Proof: Put w, = 1, I thére is
. p— lforma.llmarksalwl
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@, =0,1, -+, p — 1. These are p® different marks, If they

do not yet exhaust all the marks of § then take a mark w,

different from a,w; - a.t0, and form all marks e, + a.w. +

- agws . Continue the process until all marks of § are exhausted,
Ifw,, + -, w, are obtained in this way, then a,w, 4+ - -+ + @, Wn
{a; = 0,1, --- , p — 1) represent all the marks of 8. If

@7 aw+ o+ aawa = b+ o+ baw, .

then (&, — b)w; + -+ + (an — bow, = 0. Let k b the
largest number for which a, — b, = —¢, # 0. The:q 3 ™
ey = (@ = bw, + oo+ (Guey — b)) .
Letc;* be the inverse to ¢x in the field of residies'mod p then
weo= eie — bws + o+ o (epr— b )W
= dan + -+ dew g x\

where d, , --- , dp_; are residues mod p. But this contradicts
the mgmﬁr-ance of wy . Henee § ccmtams p" elements,
Let @ be any mark of a Ga]cns field, G.F.{p™), and form

1, a0 -, th, .+« ., Since the number of marks is finite we
 must have for some k>\ ]
KW=, =1 .

Definition; Zf t»;s the smallest positive integer such that & = 1,
then t is calledMhe order of a. _
Let o, ¢\'\ , &ym—y , be all the non-zero elements of G.F.(p™)

then Q
N Aty ATpe_y = Ty v Epmy el
| 68 8) ' a””"l =1- foralle = 0.

We shall prove now several propositions on the order of.:__
elements of a finite field &.

Proposition 5: If s isthe ovder of a and " = 1, then n = 0(3)
For we can find an integer A such that n = As + r, 0 < 7 < g,
and ¢” = I implies a” = 1, hence r = 0, since s is the order ot; 2

..
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Corollary: If s is the order of a'then p™~ 1 = G(s).
Proposition 6: If a has the order s and 8 the order t and {8, ) =
ther a8 has the order st
Proof: (af)" = 1 implies 8*" = 1 and sr = 0(t) by Propositi
5. Henee r = 0(f) and similarly » = 0(s). Thus r = O(st). B
(@)’ = 1 and st is therefore the order of a-fi. A
Proposition 7: If « has the order Ay then & has the orden.
The proof is left to the reader. D)y
Proposition 8: If s s the largest order occurring @n'a Galois
Jield § and if ¢ 4s any order then s = 0(f). A\ )
Proof: If s % 0(f) then for some prime p_we should have
s=pri=p" (00 =(p) =175 >e0If « has the order
s and 8 the order #, then by propositions % and 7 «”'8" has
the order-p’-r > &, but this contradicts the significance of 5. .
Definition: A mark of order p" =8 the Galois field of order
- p" 43 called & primative root, We drenow prepared to prove

Tamorem 8.3: A Galois fild G.F. (p™) of order p”, has

dp™ — 1) primitive rootSywhere ${n) denoles the number of
residues mod » which arg prime o n. |

Lemma 8.1: A p@émamz’al Py=o"4+az"'+ --- + 6
of degree n with c\qeﬁments n G.F.(p™) has at most n roots. .

Let « be E}‘Ij})t ofP(x) Then P(a) = 0. Hence

P@= P(z) - P(a)
SO

=T -d e @ - ) = (2 — 2)QE)

_¥here Q(z) is a polynomial of degree (n — 1) with coefficients
sain G.F. (p™). If 8 is 4 roat of P(z), then by Proposition 2 either

B =aorQ) = 0. Lemma 8.1 then follows easily by induction.

Proof of Theorem 8.3: T.et s be the largest order occurring in

G.F.(p"). Then since every order divides s we must have for
zevery e n GLF.(p™) * |

a =1,

_ By ilemma. 8.1 it follows from (8.11) that s > p™ — 1 b
© a0 9" — 1= 0(s) and therefore p™ — 1 = . Thus thet

- ,/exists at least one primitive root. Let w be this primitive ro
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then w' where ¢ is prime to p™ — 1 ig also a primitive root.

Hence there are ¢(p™ — 1) primitive roots. :
If a primitive root is known then the construction of a =set

of (m — 1) orthogonal Latin squares can be simplified con-

siderably. Let w be a primitive root and 0, 1, 2., --- , z, be
the elemenis of a finite field of order » then
0 1 ez \S
_ . , O
wD.[-‘ 1+w0+: . x“+w0+a ..’\_ -

812 I = w140 ' (=00 n—2)

A o'

wn-—2+s 1+wnjg_+s e xn_l_wrt.—{i—t'
are # — 1 orthogonal Latin squares. If :s;h(;uld be observed that
L, is obtained from L, by cyelically permuting the last n — 1
TOWS. N | . |
We now proceed to construet a G.F.(p™) for every m and
every p. If m = 1 then thevtesidues mod p form a G.F.(p).
We consider polynorials
plx) LY g e +oa,
whose coefﬁr:ier}(;s’ 'a“; .+, @, are elements of a field. We shall
prove: ,\ : ' ..
THEQRQ]!E‘E.&: If v(z), gix) are polynomials with coefficients in
a ﬁelc? %'\men there exists a polynomial d(x} such that
843)" p(z) = 0d@),  g¢@) = 0(d(x)) L
Wi such that p@) = O(h(z)), q(z) = O(h(x)) implies d(z) =,
O(h(z)). Further there exist polynomials a(x) and b{z) such that 4
(8.14) ‘a(@)p(2) + b()g(z) = d).
. If d(x) has the first coefficient 1 then d(x) 1s called the great
common divisor of p(x) and g(x) and we shall write C

®1% . (@@, @) = da).

4

- ",
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If d(z} fulfills the conditions of Theorem 8.4 then a-d(x) also.
fulfills these conditions for every non-zero mark ¢ of §§. Henee
if b is the first coefficient of d(x) then b7 'd(x) also fulfills the
conditions of Theorem 8.4 and has first coefficient 1. It also
follows that the greatest common divisor is uniquely deter _

mined. , ~
Proof of Theorem 8.4: Consider all expressions of the fomh
(8.16) a(@)p(x} + b(z)glx) = d(=) R &)

for all a(2) and b(z). Let d(z) in 8.16 have the lowest possible
degree whereby the polynomial 0 is not conside?ecf’ to have a
degree. We shall prove that d(z) satisfies thé conditions of

Theorem 8.4. By long division we can obtajia polynomial A(x)
« such that - N\
(8.17) pa) — h(@)d(g)-& Hz)

15 either 0 or has a smaller degr.eé:tl;lan d(x). Multiplying 8.16
by h{z) we have AN

K@) + i) = pie) — ()
Putting A

N -
a(x) =~~\Qi(x)a(x) ~ 1, @ = {h(x)b(x)]

we have

\¥/

D7 @@ + b@e) = ).
Since d@) has the lowest degree of all polynomials 8.16 it
follaws that r(x) = 0. Thus p(@) = 0(d(z)). Similarly ¢(z) =

0(@)). From 8.16 iy, i obvious that d(z) also fulfills all the
. (Other conditions of Theorem 8.4.
\ " Definition: If 9(2) with toeficients in o Field § has no divisor

f,;_ffxr:%pt @ and a-g(x) with a C §, then g(x) s called irreducible |

n g

We now define con
xactly the same way

tegers. We the

gruences modulo a polynomial m(z) in |
88 congruences in the system of all in-
1 calculate mod m(z) by adding, subtracting, .
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and multiplying in the ordinary manner and by always re-
placing every polynomial f(x) by the residue of smallest degree
obtained in dividing f(x) by m(z).

Tueorem 8.5: If g(x) s irreducible vn § then the residues mod
¢{z) in the system §(z) of all polynomials with coeffictents in §
Jorm a field. :

That the field postulates are satisfied by the system of

residues mod g{z) is obvious except for the existence of (an
inverse. Hence Theorem 8.5 is proved if we can proge;* To
every f(z) £ O(g(x)) there exists a g(x) such that {@ig(x) e=
1{g(z)). This is equivalent to stating that there €rists’a X(x)
such that R\

(8.18) f@e@ — 1 = Mol

Bince g(z) is irreducible and f(x) #Jﬁ{}@)) we have (f(z},

g(x)) = 1 and Theorem 8.5 follows front 8.16. '
We now take § to be the finite ‘field, G.F.(p} of residues
mod p, then we have a\>

Corollary to Theorem 8.5:F g(z) of degree n with coefficients
in G.F.(p) is irreduciblen G.F.(p) then the residues mod ¢(x)
Jorm a Galois field withp" elements.

\ -
Every polynomial with coefficients in G.F.(p) iz, mod g(x},
congruent to Qné"of the p" polynomials
(8.19) '\ g + @z + -+ an—lff“_l; .

7 N\W .
Wher&%{,“,'al , s+ , @, Tay be any of the rer:udues' mod ».
Hﬁ}ﬁlce to eonstruct a G.F. (p”) we have to find an irreducible
N polynomial of degree n with coefficients in G.F.(p).

}“For instance the polynomial z* + = + 1 is irreducible mod 2. Jf-f |

Hence the residue 0, 1, z, ¢ + 1 form a G.F.(2)). Also

}4

= 1 ot 1), B

x=alE 41, - .-‘i’%
=+ 1@+ D

b

7
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Hence z is a primitive root of this Galois field. Writing the
addition and multiplication tables for the marks 0, 1, ¢, 2 4+ 1.

we have
Addition
I o 1 x  x-+1
O\
.”\\ o
1 1 0 z+ 1 T 4 \v/
N
x T z+1 0 “"\’(.1
z+1 |lz+1 x N i 0
K7\
Multipligation
0 AWz 41
(U 0%"”%' 0 Y] 0
1 x\\ 0 1 z z+ 1
NS 0 z z+1 1
MNet+1l 0 41 z

-

N,

T

A

*

SR 0123
1032
2301

3 2 s
e

0123

2301
3210
1032

Erem the addition table we obtain, since z is a primitive
; {' 3 orthogonal Latin squares of side 4 by cyclically per-
’fgau‘smg the last 3 rows. We shall however replace z by 2 apd
» & + 1-by 3. This yields the following 3 orthogonal Latin

0123
3210
1032
2301
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The polynomial z* + & — 1 is irredueible mod 3 since
4 0-1=—-1@8), VP+1-1=13),
(—1" + (—1) — 1= (—=D3).

The mark z is a primitive root for

2’ =1, : ¥ = -1,
N
¢ = z, = —x, _
. N o
=3+l 2=z-1 \‘\
f=—zx-1 =+l N

We leave it to the reader to obtain, using t}@z‘,@laléis field,
8 orthogonal Latin squares of side 9. Q)

TrEOREM 8.6: There is a Galois field of, K}wd&r p" to every prime
p and every 7. W

The proof requires several steps. (O

Lemma 8.2: Hvery modulo g\irreducible polynomial of degree
r4s, mod p, a divisor of ¥ i\ — 1.

«d
~ 4

We shall write a{z)<{= b(x) mod (f(2), ) (in words a(x)
congruent b(z) moddh® f(x) and p) if a(z) — b(x) is divisible
by f(z) mod p. The residues mod (f(s), p) form a Galois field
of order p". Henge '

¢/ -
\V o = 1{fla), 1)
(8.20) O - |
O 2 — 1= 0(f@), P)
»Qll;‘l this is Lemma 8.2. £
O Lemma 8.3: If f(z) 48 érreducible mod p and of degree s > 3

=1 __ 1

A then f(z) is mod p not a divisor of = ) o

Assume that 2”7 ! — 1 = 0(f(z), p) and consider ﬂf‘e Gyl
field of residues mod (f(z), p). The order of this Galois field
7". Every element of this Galois field is of the form @y + @3+

S G,\,.'Ek; E < s'WhﬂI_'B o, G, " vy Gy are_reﬁldues m ip ‘
Now - 3 :
T |
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821) (g4 amz+ - + axy®

=t +mr+ -+ a2t (f@),

since x” = z(f(x), p) by assumption. Hence p" — 1is an upper
bound for ¢he order in our Galois field, but this contradicts
Theorem 8.3 since s > r.

N\
Lemma 8.4: The polynomial ™ ~ 1 has no double roots mod
pifm # 0(p). ¢\

N\ ©
We can define the differential quotient for polynomials mod
P by the same formal rules as in ordinary caleulus ) It is easy
to prove then that a polynomial has, mod_g, ‘e double root -
only if f(x) and df/dz have a common faebor. But obviously
2" — 1 and mz™™" have, mod p, no factopin common if m is
prime to p. 700
We can now prove Theorem 8.6 {I‘}ie polynomial 2% — 1
has, mod p, no irreducible factor\of degree larger than r. All
the irreducible polynomials of degree f < r are, mod p, factors
of 277 — 1. Since z”"~ —=has no double roots, the sum of
the degrees of all irreducible factors of degree f together is thus
at most p” — 1. Henge'the sum of the degrees of all factors of
degree <ris at mogh\
\ '\\ i‘: P < p—1
:~ F=1 y 1°
AKX
Hence there'must be at least one irreducible factor of degree r.
Let f{z)be this polynomial. Then the expressions

% (8::%23 G+t e+ -or g gt
% Jnod (2, /(z)) form a Galois field of order p",
4 De wition: Two fields § and §' gre called isomorphic if there
elists o bi-unique correspondence g < a’, a C§ o C§ suh
_ .Eta.f—.:»a,’, be’implfiesa-{— bes g 4 ¥, ab « o'V,
%OREM 8.7 Any two Galois Sields with " marks are 150
mefphic. .
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Tt is easy to see that every G.F.(p) is isomorphic with the
system of residues mod p. We know that there exists a mod p
irreducible polynomial g(x) of degree r. Let i be any Galois field
with p” marks e = 0, &y = 1, @0, *** , ey © Then s> ' —
1={z— a) - (z — ap_,). Since g(z} mod p is a divisor
of 27~ % — 1 it follows that for some ¢ we must have g{e,) = 0.
Since ¢ is irreducible mod p, the expressions '

(8.23) dy + a0 + Lo + ar—la:_l - ’\_’ o

where the a, are multiples of the unit element of & st all
be different from O and thus also different from{ éach other.
Otherwise g{z) mod p would have a factor in dommon with a
polynomial of degree <r. Thus 8.23 present$p different ele-
ments of § and hence every element of,\%’. But the corre-
spondeneg f(a,) <> f(x) where f(a;)_,Cf}f and f(z) is in the
field § of residues mod (g(z), p) 1s flearly an isomorphism.
Thus any two fields §, §' aresisomorphic to § and hence
somorphie to cach other. \\

In an abstract sense we haye therefore only dne Galois field
with p" marks. We shalldenote this Galois field by G.F.(p").

Tf = in the field,ofTésidues mod (f(z), p) does not satisfy
any equation ™ = 0(f(x), p) with m < p""" then z is a
primitive root.,(On>the other hand if « is 2 primitive root of
G.F.(p") themd-must satisfy an irreducible equation of degree
r. Thus if &ve wish for convenience to have G.F.(p") presented
by the‘r({si’a:ues mod (f(z), p) in such a way that  is a primitive
root,z"th%n we have to remove from 22"7' — 1 all factors which
aréaetors of 3™ — 1 for any m < p" — 1. The remaining

"polynomial has as its roots all the primitive roots of GF.(p). . %
4nd must therefore have by Theorem 8.3 the degree ¢{p” — I}.
We shall call it the cyclotomic polynomial of order p— 1

To construct, for instance, G.F.(2°) we first form the cyclo-
tomie polynomial of order 2° — 1 = 7. Its degree is #(7) = §.
Removing the rootf 1 from & — 1 we obtain Y 3

x“+x“+x‘+x8+'x"+x+1-
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This polynomial must mod 2 decompose into 2 factors of
degree 3 each. Thus .

EE R o o i A 1)

="+ a2 + bz + & + a5’ + br +a0

N\
=12 c=c=12,b+5= 1(2). Let b = 0, b S0,
Then O

N

Hence

@+ @+ =a+3=10)c+s+ab+paa =10
N\
Hence a = 1(2), @ = 0(2) ang \%
R TR T
o +
= @\¥ 2 4+ DE + 2+ DO).

It is left to the reader to constiuct G.F. (2*) and 7 orthogonal
Latin squares of side 8,  ~0%

For higher values of p*& 1 i is rather laborious to find mod |
P breducible polynofnials of degree r by decomposing the
cyclotomic polyngnﬁi&l of order p” — 1. Ty is however easy to

find ineducible\Q\eljrnonﬁa]s in other ways, if we are willing

to forego the'advantage of having z as a primitive_root. For

instance, if(% is odd then there always exist residues a for |
which T alp) is not solvable. Then 2* — g is irreducible
mod p5The polynomial 2 — % 15 identically 0 mod 3; thus
2* SN — 1 s irreducible mod 3 since it otherwise would have

¥ alitear factor mod 3, The polynomial z* + 4~ 1 is irreducible
;\i‘xiod 2. Obviously it does not have the root 0 or 1, thus the

) only possible decomposition would be of the form
1, P ter41= " + bz + D{z* 4 bx + 1)(2).

- Biom which it would follow that b + b’ = 1(2) and b + ¥ =
0(2) which is impossible. With these and similar considerations
one easily obtains the following irreducible polynomisls:
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md2 2Z+z+ L +z+ 1L, +z+1,28° 4+ 41,

" mod3 £+ z-1,1 —z+1,
mod 5 =’ -+ 2,

mod7 2+ 1. _
These polynomials take care of all Galois fields with less than

63 elements and these satisfy all needs that have arisen so far)y

in the design of experiments. // O

From Theorem 8.6 and Theorem 8.1 we see that/agét of
m — 1 orthogona! Latin squares of side m can always'be con-
strueted, if m is the power of a prime. If m is nn} the power
of & prime then m may be decomposed into pringe powers.

m\/
mo=pi el (o A DD
We then construet the following sygtelé:;.’ﬁrg consider “points”.
v = (g™, ¢, -, gm)t’i.’:; g C Q).
We define addition and mglsfﬁﬁéaﬁou by the rules

& {1) [¥3]
ViV = (gfi‘i,’\--- N S BVE (RN

M
RN s ST AV (5} + (o}
:“bl xfz o a %G 2

The systom*thus constructed is not a field since, for instance,
the elemen(0, 1, --. , 1) has no inverse in m_ultip]icatior%.
HOWEVpQ.ﬂ{é postulates I-IV for addition and I-III for mu!tl-
pﬁc@ﬁi{’h and postulate V azre fulfilled. Allthe “points” which
hf“YLe:ﬁO 0 among their coordinates possess inverses.

Dt

N\

: I &3]
0, Q’g‘) =1, 5’2"; Tty et

N

be the marks of G.F.(p2%, then if r = mins(pi — D the™ "

“points”

(8.24) v, = (9‘;”, g{_zy’ e gg,))’ ..0 <j <
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possess inverses and also v,
the points vy in such 5 way,
by 8.24 and form the r arrg,

= e does if 7 > . Now we numbep -
that the first » elements are given

0 1 Tm—l
¥i ¥+ 1 ey + ¥t .
N |
(8-2.5) Ly = YiYa Yive + 1 Yive + Tm—}.\‘\’ ‘
- ] L] : ’\. "~
Yi¥m—1 ¥i¥m—1 + 1 e '}’f(;ri;l + Ym-1 -

We prove first that L; is a Latin squaré.’
row would contain an element twice then

Suppose the ath

Tte + 7 = qu};x;\"l_ Yi

_ from which y, = Y1,
contains the same g

i + 1’:70»;%

in the gth-tow and th
rth{ﬁ}&;hm, we should have

&

and consequently Yy =

k=1 fo]lo}z{é.”Suppose that the <th column
ement twice, then

of “points”. If this pair oceurs

e #th column and in the ¢th row and the

R\ ety =y, & T,
) v + Yo =YYe + 7. .
Hence :
(8.26) e~ vy, = e =~ v )v,
and since vy, — Yi POssesses

an inverse 826 implies y, = ¥

Y-« Thus we have

I
Yetvvs j<r7r
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Tunorenm 8.8: Let gk, , g, -+« , g% denole the clements of
GE.(p1), -+ » G.F.(pl) respectively where gi*' is the O element
and gi* the unit element of G.F.(p;"). Form the points

Y = (ggi)! ggf)a Tty Q‘E:}) )
which are multiplied and added by multiplying and adding their
coordinates. Let further '

B £ B (g,gn, Tt g}”)) 0 < j S r= miﬂ(‘l”:i - 1) o'\:\
+ .,\ ~
ond number the remaining poinis in any arbitrary way, from

r+1om = p;* - - pi* in such a way that v, = Qf="'(g.§",

v, 05, Then the arrays : m;\‘
] 1 Y Y \ '
D
Vi v+ 1 s ’Yiupfm-l“,\
Li = vy, ¥iya + 1 ng’fh'i"}’m-L G=1,---,1
Yi¥m-1 ¥i¥m-z 'JZI\ SRR 7o Ry o, Y b

form w set of r oﬂh@g}n\u\l Latin squares. _

"This result jstHe best that has been obtained so far, No case
of more thamhp“= min, (p;’ — 1) orthogonal squares is known
to datesTarty (Le Probleme de 36 Officiers. Comptes Rendus
de’l Agbeiation Francaise pour L’avancement des Sciences' II
{19619 pp. 170-203) found by = skillful tactical enumeration

~thad no 6 sided orthogonal pair exists. For numbers larger than
& which aze not powers of a prime the problem is comp}ej;ely
unsolved' although it has been considered by mathematicians

h__-_‘_-—--——._.

*After completion of this manuseript R. H. Bruek :?nd H. J. Ryser
(Canad. J, of Math. Vol, 1, pp. 88-93) proved the pon-existence of m — 1
orthogonal squares of side m if m = 1, 2 (4) and the square free part of m
18 divisible by a prime of the form 4k + 3.



>
It can readily be shown that no more than m — 1 orthogonal’
Latin squares of side m can be constructed. For we may always’
arrange the numbering in the Latin squares in such a way that -
the first row is 1, 2, ... » M. Then in the remaining com-
partments different Latin squares must contain different -
bers which must also be different from the column putsber,
Thus at most (m ~ 1) Latin squares of side m can Qeelr ina
set of orthogonal Latin squares O :

Historically it may be remarked that the firsth proof of the
existence of (m — 1) orthogonal Latin squaredif m is a prime’
power seems fo have been given by MtNeish. (Annals o
Mathematics, Vol. X1IT, pp. 221-227)NFhe methods for the-
construction of orthogonal Latin squares’ presented in this book
were found independently by WL Stevens (Nature, Sept
3, 1938) and by R, C, Bose {(Sankhya, Nov., 1938).

"




CEAPTER IX "o

The Construction of Incomplete
Balanced Block Designs '

IN THE coNsTRUCTEON of incomplete balanced block designs
finite projective geometries have been utilized and yield whole
‘series of those designs. For our purposes it will be sufficient to:
consider finite analytic geometries. The points of these geplﬁe\-'%
tries are defined as follows. We consider G.F.(2"). A peint’in
the m dimensional finite geometry P.G.(m, p”) is gufordered
set of m + 1 elements of G.F.(p"), not all of whi¢h‘are equal
t0 0. Two sets (g1, == » Gmes)y @, <" , @uas) Tepresent the
same point if s = Agf,i=1,-+,m+ LA¥AC &G.F.(p").
For any two distinct points p = (g:4CF 1 Gmri)y P2 =
!, -+, #hss) we define as the ine joiaing them the set of all
points of the form « W :

S

Q

Mpy  Aops = e+ 7\21?}’}} . y Aifme1 + 7\29;4-1); )
(9.1) B |
)\1{’3\2 C GF(I’"},- ’ .

+L) e

where at least one df\‘biié N's is different from 0. .‘
The system of(bpints and lines obtained in this manner Is
called the analydic projective geometry of GF.(p°) of m di-
mensions spds denoted by P.G.(m, p")- )
We ﬁ@f;?zﬁmpute the number of points in P.G.(m, p°). There .

are p"V ordered sets of m -+ 1 marks of G;Fl‘;(;?")- Bince we
excliidled the set (0 --- 0) there remain.p™ ™" — 1 ordered
3 A : from Q. These

""“?tg' at least one of whose elements is different
\Jay be arranged in groups of p* — 1 sets all of whose elements
represeni the same points, since (¢, ~** > Gurr) = M1y 27
M.i) for every X = 0 in G.F.(p"). Hence there are

N el L
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distinet points, The lines are given in the form Ap, + Ay
where p, and p, ase distinct points. The points of this line are_'.i
given by their line coordinates Ay A . Two points A, v A ]
Fit y p2 Will be distinet if (A, yA) # v, py) for all v in G.F.{p".
Hence the points of a line form an analytic one dimensjong]
geometry and the line has therefore 1 + p" points,

We now consider the & dimensional subspaces of P.G.(m, P

Letpy, -+, puy, be k + 1 linearly independent points, That
is to pay Oy

- - N 4 o\ w
(93) )\1;01 + .- + Auzpkn = (O: Tty 0) 4 o
implies A, = ... =, =g We consider then all the points

of the form Ap, + ...

+ Ms1Prs Assuma}h\at two of thess
points are equal. Then § /

?\1}31 + .. + )\kn?kn = V(#ﬂh.’t\\'" -+ #k+1pk+1);

.()\1 - ”Ll)Pl + . + (Aesa _;.”“fl";kx+1)Pt+1 =0, -, 0.
Since p, , - - - s Pety are inde_pf;}m;[eﬁt this implies

Al_‘—_'

VL SN0 Ay = v,

We can now introduéé'coorciinates Aiy ocr, Xy in the b
dimerisiona) subspacgs, Clearly for §
tain for every tv(b Points slso the I
every k dimelqsibna.l__ subspace of a P,
(&, p") and hag*therefore 1 + p"

2 1 the subspaces con-
ne joining them. Hence
G.(m, p) is itself a P.G.
+ -+ + p* points. We nOW

deT:ermined by Pry v-e s P ThUS 1 + .’P" + .- + p””‘u
points are excluded anq 7/ S

i 1 hoose
from, Thus the number - + p™ are left to c

: of distinet org | inde-
pendent points in P.G.( ered sets of k¥ + 1 inde

m, p") is
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The number of ordered sets of (k¢ 4 1) independent points

in P.G.(k, p") is by 9.4 :
(Lt 2™ e @47 ™

Hence the number of P.G.(k, p*) contained in P.G.(m, p;‘) N\

N
becomes O\

(9‘5)' A4 - F ™ 4 e PP+ j}l@'}\) "
_ L+ 7 @ Y

. ¢*¢ =
We finally want to find the number of P.G.(&’,h)‘) in P.G.
(m, ") which contain a given P.G.(k, p"). We'first choose a
point .., not contained in the given P.,G.‘%k; ™). This point
Pees may be chosen out of p**V" 4+ - agh p™ points. We then
choose py.s out of the p**#* 4 --: 4'p™ points not contained
in the P.G.(k + 1, ") which contains p;.. and the given P.G.
(k, ). Continuing in this mannér we can obtain a P.G.(s, p")
containing the given P.G.(&Np") in (p**P* + - + ™) -+
@™ + -+ + p™) wayg \Putting m = s we see that every
P.G.(s, p") is obtainedrm this manner in P*M 4 e p™)
e (ptTUr 4+ p”)}‘({ Ways. Hence for s > k we must.have

(p(ki-k:t\n.;_f_' R IR ¢ 4o+ ™) "

(?\ij-'l)n + . + P“) .. (p(s—-l)n __I__pen)pm

N\ '
dﬁmN{G.(s, p") in P.G.(m, p") which contain a given P.G.
(&, o7
{ ’Slimmarizing we have:

\ s

o

ma

Y% 1. Every P.G.(m, p") contains exacily 1 + " -+ e+ p
points. :
2. Bvery P.G.(m, p") contains exactly

Utp ot gee @4 ) PG ).
(1+pn+ +p;m) ___(ptk-—nn_l_ptn)p
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. 8. Every P.G.(k, p") in P.G.(m, p") is contained in
U ™) e

s {kt1n "

\p —|— P + p"") AR (p(r—lju + ?)n‘i%nn

PG5 p)sfors>k

Fork = 0, 1 one obtaing in partieular: QO
A. Every point is contained in ¢ \:\
. N
r= @ T ™) A LY
(pn + - + pan) ‘g (p{l—-l]n _j_'i.pan}ﬁan
A\

P.G.(s, 2 of a P.G.(m, p7 s s > 0,
B. Every line is coniained in \’\\\

k‘__‘_(2,’&;___}__'__I__pﬂmJ 3"."(}38“-'-"'_‘_?_”1&)
-______(;Tz;__-_____htu—“-—_.__

v

in ) different Pyt ) 1), |
Wf M2y now identify the boints with varieties and the P.G.
(s, p ), Wltg':g)iocks. Then we have the following thoorem.

Tunerry 9.1: The P.G.(s, p7 contained in, g P.G.(m, p") form

. G b’gxi?aced incomplete block, design with the parameters
'~‘. . ) n s i on o
196 b= M’wﬂ“)
J . ) (1 + T + P "} [ {p(a-—lln __I__ pan)pan
'= b(s, m, pn)}
vt=14p" + ... +Pm=v(m,p“),

F=ladpy ... TP = ks, o,
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@ g
(pn + e + pm) . (p(a—l]»_+psn)pﬁw

= ?"(35 ", p")3
{1 ifs=1

)\=Ji(_}’f“_'_“'+pm”)'”(pm+"'+pmn) X
! (pzn + R +peu) (p(a—l)n_i_p,,, ‘?, '.\"'\

l = As, m, p") ife > 1. \‘

We next consider the points in P.G.(m, p") gorimon t0 8
given P.G.{m — 1, p"} and a given P'G.(s, pl)\not contained
in it. Let p, be a point in the P.G.(s, p") whiel)ss not contained
in the P.G.(m — 1, p"). Let @1 , * - , (P& m linearly inde-
pendent points in the P.G.(m — 1, gt Then g, @1, ~-* 1 Im
are m + 1 linearly independent paints and hence every. point
of P.G.(m, p"} is of the form RN " C

Mo + Mq»f":;:'.' s+ Amsia -

Now let p, , p, , - NP be 's -+ 1 linearly independent
points of the given P'\.G.’(s, p"). Then for every i we must have
" an equation

(97) pxF 1“]  t )\é” e ol + )\:jlqm .
£ ) p g

Therefor@p! = pi — MOpu,i=2 -+ s+ 1, is contained
in the RG.(m — 1, p*). The points pi, * <+ » Pl ATE Ob‘fIOUSIY
lineanly independent. Hence the P.G.(s — 1, 7) of points of
fheform Aep, -+ -+ -+ Apmples B contained in the P.G.

N — 1, p"). But these are all the pomis of the given P.G.
(s, ) which are contained in the P.G.(m — i, 1?’“). If' there
were another point pf of the P.Gi(s, ) contained m’the
PG.(m — 1, p*) and linearly independent of Pz, <+ s Prrt
then \,p! + --. 4 A.apl.s Would present every element in

“the P.G.(s, p"), contrary to the hypothesis that not all its
points are contained in the P.G.(m — 1, #°)-
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Now by deleting from = P.G.(m, p") any given P., -
(m — 1, p") and all its points one obtains another system of
points and lines which is termed the finite analytic Euclidean
Geometry E.G.(m, 2™ of m dimensions. Every P.(3.(s, p") con
tained in P.G.(m, ") but not in the P.G.{m — 1, p") becomes an _
E.G.(s, p"), since by deleting a P.G. {(m — 1, p") from P.G.(m, p")
we also delete a P.G.(s — 1, " from each of these P.G.(s, oY
contained in P.G.{(m, ). The number of points of an B3,
(m, p") is )

oim, p) ~o(m — 1, " = p™

The number of E.Gh (s, p") contained in E.G.(m,«f)gj&’is
®¢
b(s: m, pn) - b(s! m— 1, Iﬂ”)\

The number of E.G.(s, »7) containing a_given B.G.(k, p") s
the same as the number of P.G.(s,'\’p) containing a given
P.G.(%, p). Hence we have / '

TEEOREM 9.2: The E.C. (s,’p."}.éontm‘ned in an E.G.(m, p")
Jorm a balanced incomplete blagk' design with the parameters

b = b(sl m;i‘f‘)’ - b(s) m — 11 'Pn):

(9.8) k%p

‘A
cond N = M, m, ),

%ﬁu example we constrict the lines of the P.(3.(3, 2) and
beE.G.(3, 2). i
:;\'(3, 2) exaotly 28 lines and 8 points

in 7 lines. Every line of the P.G3,
every line of the E.G.(3, 2) cont
anced block designs which we gh

(3, 2) contains 3 points and
ains 2 points, Henece the bal-
all obtain have the parameters
b=35 =15 '

b = 28, v= §

r=7, k=3’ A= 1;
H T=7) k=2’ h=1-
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The second design consists simply of all pairs of points and can.

-easily be obtained directly. G.F.(2) consists of the two elements
0, 1 with the rules of composition 0 +- 0 = 0,0

L1+1=0

The points are then given by

p: = 1000, p; = 1100,

p. = 0100, pg = 1010, P
p. = 00310, p, = 1001, pn
Py = 0001, pg = 0110, P

The lines ecan be

+1=140=

po = 0101, pis = 1011,

DU].]., pu = 0111,

1101,

N

{

1110, pup = 11114

S

p¥4 2

T

obtained by taking pairs of poinis, for

istance, p; and p, and forming A +}‘g@:f0r (s M) =

{0, 1), (1, 0), (1, 1). Thus for instance-the” points in the line
haaareh , P and F4l + P2 = Ds .:T.h

¢ lines through p: ; Ps

and p; , ps necd not be constructedyif the line through o , P2

has already been written dowm\Proceeding systematically in

this way one obtains 35 linest\

CPWePs , DPsPs ";<193'Ps P11y
Ko

L™
DiPs Pe 102?24}% ; DaPrPus s

NP Do ’\y:}?’z'ps P g

&

plwii I

o ’Q’ﬁpe Pz s
V

Pitopha

PaPas

If we delete from this design all the point
0, th_at is to say, the plane Mpy + A2
obtain the E.G.(3, 2). The deleted point

307 Drs

DaProPis 5

DaDraPs

PslPs Pio 4

DaPo Pra )

PsP1zPrs »

PePs Pz »

PaPe Ths »

PiPs s »

v s
Pspribrs » Do PasPre
pap; Ps , PrPebis,
Pspr Do + PrPubis,
PsthaPis » Ds Pe Pros
PsPisPre s Ps PrePras
PePr Pro s Po PPz
PePs Prs »  ProPuPrz

< with last coordinate
+ )apa then we must
sare‘pl,.pg,ps,ps,

[\A
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Ps , Ps , Pu - The reader may verify that the remaining sety
consist of all possible pairs of the remaining 28 points. To give .
also a non-trivial example of a finite Euclidean geometry we :_
shall construet the E.G.(2, 3). The P.G.(2, 3) has 8* + 3 + *
. 1 = 13 points; the E.G.(2, 3) has ¢ points. G:T'.{(3) consists of
the marks 0, 1, —1 considered mod 3. The points of P.G.(2, §{
are: . : ¢

po=100, 3= 101, p = 1L0,~1,  ps=G3LL
O

p=0,10, g = 0,1,1, o~ —1,1,1, ..'}‘:

7
<

P =001, o= LL1, pu=L—LLNOY

¥

Py = 1:1.;01 s =1,—10, p, = 1’1,:‘:_\\1'1
The ling through p, and p, comsists of the points ps , P2,

Dt P =P, P = 'pg . Bystematically proceeding as
before one obta.ms the Imea

N

?1?39 Pas pz?ﬂph'fjls ’ PaPeProPr PrPsPgPrs
DiPs Ps e 3 2\ P:PsPr P11, PaPsPros 5 ‘

. L\ '
DiPe 107,1{1;1,) PiDsthoPre , DsPePo P11 »

<G

pm 1213 5 PaDapr Prs PsPsPs Prz

Q.\Tow we delete one line, say the first and all the points on it

.a.nd obtain
AN

\ ) DsPspu s PP Pz PaP7 D1z » PeDohr1 »

- PePr P Bspr Pu DaP1ePir , PsPsihz »

This is the E.G.(2, 3).

PuPrapss Poothz , Psthopha P - %
i
|
The B.G.2, #7) can also easily be obtained from 8 st &
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-1 orthogonal Latin squares of side p* which were con-
- gtructed from a Galois field. We take as points the compart-
ments of the Latin square numbered from 1 to p™. The lines
are then given by the columns, the rows, and by the sets of
compartments whese ¢th number i8 @, (@ = I, ==+, P7), .
(i=1, -+, p" — 1). These lines are arranged in m + 1 sets
of m parallel lires each. Thus for instance the rows are parallel
to each other. To obtain the P.G.(2, p") one adds additional
points, the same point to each line of a set of parallel lines and )\
different points to intersecting lines, and takes these additiohal
points into one additional line. A\
Finite geometries furnish whole series of balanced ifebmplete
block designs. Ilowever, only a few of these aa'ega,j}.ﬁresent of
practical intercst since the number of replichtions should in
most practical cases not exceed 10— 0
Other serics of these designs can he.Obtained by applying
two theorems, first proyed by R. C. Bose:’ (Annals of Eugenics,
9 (1939) pp. 858-399.) To formuldte these two theorems we
need the concept of a module. Agnodule is a system of elements
such that to each pair of elements a, b there is uniguely defined
asum g - b satisfying the postulates I, II, ITI, IV for the
addition in a field. Forunstance the residues mod m form a
module for every mé z( rmodule with a finite number of elements
is called a finite module. If I has n elements then 9t is called
a module of ort{éi: . .
Let % nowk be a module of order 7 and let m varieties A",
-, 4$Neorrespond to every element A of the module.
We Iflg&\ft»rm blocks of these varieties.
O (A, o, AR, @R, AR
’ From every block of & varieties we may waite bk — 1)
expressions of the form A, — B; = (4 — Bl - This ex-
bression is called a difference of typevd.
Taking for instance 2s our module the residues mod 5 we
could form the blocks ' o

(01 ] 12 ’ 21); (02 1 31 t 42)‘
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Then the differences are 1, , 2,, y 412y bia, 31y, 45, from the
first block, 8;; , 422, 201 , 1 , 1 , 415 from the second block.
The differences of type a8 are called pure if @ = § and mixed
if wes 8,
If in ¢ blocks every pure difference except 0 is ropeated )
“times apd every mixed difference the same number ) of times,
“then the differences are termed symmetrically repeated.
We shall now prove the following theorem. O\
TaroreM 9.3: Let M be a module containing the) elements

v, oo 9" and Tot m varieties ', -1 vileksrespond to
every element v, The variety o' 4s said to, bélong o the jth
class. Suppose that there exist ¢ blocks af elem‘eg}zts By, -, B
such that -

AY;
L. The varieties in each block are different Jrom each other.
2. Amonyg the elements in B, BL) -, B, exactly r varieties
belong fo each of the m classes. ()

3. The differences arising f;r:o’rﬁ By, -+, B, are symmetrically
repeated, each occurring X tigies.

If

3

a?’bd in'e + 9‘ ;}f« lg{‘;
(9.10) N B, = (U7 ... yuey

A L] bl vaa
Fo@ﬁé blocks B.s for all < and ol ¢ C M, then:

'\‘I%I n the blocks By every variety occurs r times,
N2 Any two varieties occur together in the same block exactly M
O times.
N\ Corollary: If each block B; contains the same number aof varieties
the blocks By form an tneomplete balanced block design.

Proof of Theorem 9.3: To every pair of elements », v of N
there is exactly one 8 sueh that » + 6 = o, Hence sinee » of

the varieties in B, , -.. | B, belong to the sth class, the variety
order that a pair . , v, of
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' varieties oveurs exactly u times in the blocks B, it is necessary
* and sufficient that exactly p times for ) and v} in thé same
hloek

uw + 8 =u,
(9.11)
o+ 8=y,

Hence ' — v = u — v =d. Then ¢ = u — o =9 — o',
Hence the pair u, , vs oceurs exactly 88 many times as the
difference d arises as a difference of type o8 in the initial blockst \.J)
B,,:--,B,,thatistosay x = \ times, This proves the theorefn)

As an example consider the group of residues mod 24-"1
end the pairs o \:

(1! Qt)? (2; 2%—1), -, (t: i+ 1) 'M}._

Every residue different from 0 arises fropa shese pairs just
once. Now consider the blocks o\ '

S

L, @20,,00, 2, 2t — 1y, 0z), ;-u.',’(tl , -+ i); INH

(12 1 (25)2 ’ 03); (22 ' (2t - 1)2 703;1 e : (52 ; (f' + 1)2 1.:03);

(L, @0y, 0, (2, @ —(Bp ) 0 oo, (e, G+ Ds, 0
\

\’\‘{61 ] 02 1 03)‘ )

All pure differentes arise exaectly once from _the first two
elements of the st 3¢ blocks. All non 0 mixed differences of
typd’1,2 and £9pe 2,1 arise from the first set of blocks, those of
type 2,3 agd type 3,2 from the second set and those of type
1,3 a.nd‘éﬁ from the 3rd set. The mixed djfference’s 0 arise
fm?‘k(Ok , 0y , 0,). Since each block contains 3 varieties, we
Ohtain by applying Theorem 9.3 an incomplete balanced block

keﬁlgnwithv =6+ 3,b=0+D@E+FDT= 3+ 1,
= 3: A=1, . o

For instance let £ = 2, then 2t + 1 = 5 and the initial blo{;:ks
e (L, 4, 0p), (2, 3, 0s), (s, 42, 0 (@30, O
{13 ! 48 1 01); (23 ? 33 ’ 01); (01 H 02 ' 03) We leave the GD]].StI'U.I}?thn :

his design to the reader.

o
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Let us now adjoin to the module I the symbol « with the i
‘rule of operation « <4 & = @, We shall now prove the following :

_theorem.

TaroreM 9.4: Let I be a module with n elements w'”, ..

1]

"™V, To every element u'® let there correspond m varietiss
ws®, -+, ul®, whilst one variely corresponds to the symbol ».

The variely ui™ 1s said to belong to the ith class and the varilies
{a}

u:™ are called findle varieties. Suppose there exist ¢ +($)blocks
Bl,-"',-Bg,Bl’,"',B:,S‘twhihﬂt: '\ )

1. The varieties tn each block are different from ‘edch other.

2. The blocks B, , --- , B, contain exacily’h finite varieties
each while B , -+ , B! contain exactly (& 1) fintle varieties
and o, O

3. Among the varieties in B, , - - 2+ B, exactly ns — X belony
to each class, while among the varéelies in B! , -+ , Bl exclly
X belong to each class. QO

4. The differences arisingSfrom the finile vaviclics are sym
metricully repeated, each ociurring \ times.

We define the blocks :B;s , Bly as in Theorem 9.3.
Then the blocks{By, , Bly form an éncomplete balanced block

-design with th ;@r&mgtemy =mn + 1,b = n{i + ), r = 05, kX

From Theorem 9.3 it follows that every finite variety is 1
peated, r=ns times and each pair of finite varieties occurs}
times. {T'he variety © oceurs in each of the s blocks Bl hentt
© quotrs also ns times. Also each finite variety occurs in the
Q{fbecause of 3 exactly A times, Hence « occurs with every

i ‘ finite variety X times together in the same block. .~
4 ~\’ ¢

\ 3

As an application we shall construct designs with v = 12+ 4
b= @G+ D@ +1),r =4+ 1,k =4 A= 1 wheredt +1
13 & power of a prime. :

_ We take the elements of G.F.(4¢ -+ 1) with respect to addF
tion as composition as our module 9. Let # be a primiti®®
root. We shall first show that there exist odd numbers « 83

- g such that (z* + 1)/(z* — 1) = 4%

The non 0 elements of G.F.(4¢ 4+ 1) are given by 2, z,
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£, We form for every o = 0 (z* + 1)/(z® —~ 1). Thisis a
non O mark of G.F.(4 4+ 1) if & = 2, since  is a primitive

root #°° # 1 and hence z** = —1. Hence for all values a # 0,
2t we have '
“+ 1
9.12) L )
x* — 1

Clearly 2* = {2* + 1)/{z° — 1). Hence to every a = 0, 2¢ O
helongs & unique valie ¢ # 0, 2t but among the residues mod()\*
41,2 --- 28— 1,204 1, , 4t — 1 there sre 2¢ odd residued *
but only 2t — 2 aven 1esndues He:nce to at least 2 odd residues
there must helong an odd residue.

Now let 3 varicties correspond to each mark of G Ettlt + 1.
We form the (3t + 1) blocks

24 2¢ 420 2ita 2e42ibay,
(x e y T2, X2 ):

24 20424 24 2¢42i+ (N\NY _ vas —_
(xl!",l i * ¥ x3i+u! Ta i “);. w b 0? 1’ ’ 4 t 1
¥

"
&
24 20424 2i+a 2ec2ibay
(xg, £y PR y T 0N al
. o
N -

(m,Ol,(}g,Og)- m<“
¢ 5 ] ¥

We observe first thab\df”’:_ —1. We further put 2 + 1 = =,
2~ 1 =g, z* &1 = . Then we may choose o so that

0.1 { ‘1\ / — =
9.13) ok w—v=1(2).

E"el‘y\blass of varieties occurs 4f times in the first 3¢ blocks
and qrige ir the last block. The differences of type (1, 1) arise
fTOB&‘the first and 3rd set of blocks and may be written as

\(Q 14 2“‘!12$+ega( 2t - x2|+2lu+h_ﬂ+ﬂ’ (1( - 0’ . ) f— 1),

Where ¢, | ¢, are either 1 or 0. These are 44 differences. We shall
show that no two of them are equal. Suppose that

(915) xzi+e,2:+¢m+8 — $25+e';2t+¢'n“+5_
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Then

. x?{a’—i]+2!fn—¢',}-}a{n—!’u} = 1. l,’\/
Hence

(9.16) 20 - )+ 2e, — &) = —ale; — &)(47).

Since « is odd it follows that ¢, = €2(2) and therefore e =(e.
Thus ¢ — j = {(e — €)(2¢). Hence either ¢ — J =430

4 — J = (2{). Both of these CONEruences are imquséibe for
¢ 7 jsince 4, j < ¢t — 1. Hence the 4f differences of ‘type 1, |
are distinet and different from 0 gnd thereforé Must contain
each of the 4¢ non 0 marks exactly once. Si 1ildrly, it may be
shown that every mark of G.F.(4¢ 4+ Nodcurs exactly once
among the differences of type 2, 2 and 3,3 Let us now consider
the mixed differences of type 1, 2. These arise from the first

set of blocks and from the last blbck only. Those from the
first set of blocks may be writtef as

(9.17) xzne.ec . szuh,"Qf:{;:. x“(:l:l _ (i‘;)xa)

Hence one obtains/one of the four expressions

any
~

.._x‘zi(xa\_‘\_gl) — m2i+2:+p’ ng(xg _ 1) - xzi-}—u,
xzs(xf?;F 1) = mi’ﬂu’ __x2i(xu +1) = xfu+2x+u’
</
hence:e'q,hér
\:t}’ xz‘.“"z““‘ or x2:‘+¢2z+v
O\

,fWe obtain thus 4¢ non zero marks of G.F.(4f + 1), We shall
O prove that they are all different. We first, observe that

) 2

(918) z2i+¢2i+u = $2s‘+z’21+u

implies 1 — j =

e — ¢ (2), which was already shown to be
impossible. But

(919) x2i+e2:+u — x'z;'+e'21+v
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| implies ¥ — v = 0(2) which contradicts 9.13. Thus each of the
F 4 non 0 marks of G.F.(4¢ + 1) oceurs excatly once among the
- differences of type 1, 2. The proof for the other mixed differences
is analogous. The 0 differences of mixed type all arise from the.
last block. Thus all the conditions of Theorem 9.4 are satisfied.
 Asan example let 42 4 1 = 9. G.F.(9) may be presented
- s the field of residues mod 3, y* + 1. G.F.(9) then consists of
theQmarks; 0, 1, =1, 9,y + 1L,y — 1, =y, —y + 1, -y - 1.
#={—y+ 1) is a primitive root. : C

N\

=yt D =yt l=y, D
N
R R T SR
(9.20) e
5 8 7 : MY
Z=y—1, r = —y r = —1— .‘x.z]_‘
’ '_}{’\\J :
el _—y—1_ )
r—1  —y D L

R

Hence we may take & = I. The ﬁragﬁsel of initial blocks is then
Ly (=1}, 22, —-:{2@,‘2'v (zf, —a1, fu"g f_'xgj.
Thas the initial blocks\aff;}\
(1), i{;%’l)l Sy De sy — D,
E.[g{s;":-yx 5@+ e (—y — Dl
\\ f{1), (=De =y + D50 - Da,
\\"\ [ 5 =3 3 (y + Da; (~y = Dili
(a5 (=15 5 (—y + D5y ~ Dl
(s 5 =95 ; (g + Dy 5 (—y = Did;

(°°;01 3 O ; O
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The completion of the design is left to the reader. The de-
signs constructed from Theorem 9.3 have for m = 1 the prop-
erty that every variety occurs exactly ¢ times in every posttion
in the blocks. This is of importance if the position in the block
has an effect on the yield. The analysis of varianee of such
designs, when the block position has an effect on the yieId,,'Ks
straight forward and is left t6 the reader.

Of particular interest are the so-called symmetrical designs
with » = b, r = k. From any symmetrical design gwo Other
designs can be obtained. The derived design ob;ai;né'd by re-
taining in the blocks B, , --- | B, only those warieties which
are in B, and the residual design which is obm;':i;ri\ed by deleting
from the design all the varieties in B, . In’grder to show that
these configurations are really incomplete>balanced biock de-
signs we shall show that every b]oglgx bas exactly A varieties
in common with B, . From this reswlt 3¢ follows that the derived
and residual designs are incompleté-Ralsanced block designs with
the parameters: k, » — 1, k 5% A — Lando — &, v — 1, &,
k — X, A respectively. - ‘q:f"

As an example for the probesses of residuation and derivation
wo shall consider the‘design 25, 25, 9, 8, 3. This design was
constructed by Bhéttacharya (Bull. Caleutta Math. Soc. 36
(1945) pp. 91-96%and is not yet incorporated in the statistical

‘tables of Fisherund Yates, which listed all incomplete balanced

block design’g; with » < 10 which were known up to 1943. Bhatta-
charya’s/design is as follows:
R

RO

AP 2,05, 6,11,12,17,20,23; 1,3, 5, 7,10,12,18,21,24;

\ W
) 2

O

1, 2, 9,10,15,16,17,21,25; 1,3, 9,11,14,16,18,22,23;
i, 2,7, 8,13,14,17,22,24; 1,8, 6, 8,13,15,18,20,25;
3, 4,7, 8, 9,10,17,20,23; 2,4, 6, 8, 9,11,18,21,24;

3, 4,11,12,13,14,17,21,25; 2,4,10,12,13,15,18,22,23;
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3,4, 5, 6,15,16,17,22,24; 2,4, 5, 7,14,16,18,20,25;
1, 4, 5, 8,10,11,19,22,25; 5,6, 9,10,13,14,17,18,19;
1, 4, 9,12,14,15,19,20,24; 5,7, 9,11,13,15,20,21,22;
1, 4, 6, 7,13,16,19,21,23; 5,8, 9,12,13,16,23,24,25;
2, 3,6, 7, 9,12,19,22,25;  7,8,11,12,15,16,17,18, 19,.’
2, 3,10,11,13,16,19,21,24;  6,8,10,12,14,16,20, 2@\22\
2, 3, 5, 8,14,15,19,21,23;  6,7,10,11,14,155 23 ‘24 25.

\\
17,18,19,20,21,22,23,24,25;

From 9.20 we obtain by the process ofy: rlesaduatmn deleting
all the varieties in the last block the demgn v=160= 24
r=9%k =6k = 3 as follows:

(9.21)
1,2, 5, 6,11,12;§ 34,3, 5, 7,10,12;

1,2, 9,10, 15@6 1,3, 9,11,14,16;

1,2, 7, Sﬁs 14; 1,3, 6, 8,13,15;

3 4..,7,,. 8 0,10; 2,4, 6, 8, 9,11;

":3\4 N112,13,14;  2,4,10,12,18,15;

.\\ ‘3.4, 5, 6,15,16; 2,4, 5, 7,14,16;
\:\ 1.4, 5, 8,10,11; 5,6, 9,10,13,14;
1.4, 9,12,14,15; 5,7, 9,11,13,15;

1.4, 6, 7,13,16; 5.8, 9,12,13,16;
2.3, 6,7, 9,12 7,811,12,15,16;
5.3,10,11,13,16;  6,8,10,12,14,16;
2,3, 5, 8,14,15;  6,7,10,11,14,15.
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The derived design is a triple system with » = 9, b = 24,
r=8k=31=2

We shall now prove that in a symmetrical design every block
different from the first block has exactly A varieties in common
with the first block. Let a; be the number of varieties common
to the first bloek and the ith block ¢ = 2, --- , . Then

(9.29) Y a=kir— 1 \

oA

7\ .
since each of the k varieties of the first block oceurs’ 7 — 1

times in the remaining blocks. Also 4N

‘ N,
sinee each of the [k(k — 1)]/2 pairs of',(m}leties of the first block
oceurs {A — 1) times in the remaihihg blocks.
From 9.22 and 9.23 we get _\

Sal— o Y+ (b — N
i § R S

= (= D@ D - @ — DEG — 1) + (b — DN,
butb = v, & ;}5«:{?—- 1) = Ay — 1) by 7.13 and therefore
Z\(a— M= =Mk — 1)+ xab— 1) = 0.

&
I-Iem{@’
‘.'f a; = A-

&

L We finally observe that from every incomplete balanced

block design B, , --- , B; another ingomplete balanced block -
design Bi , --- , B{ can be obtained by putting into B} all
varieties not in B; . The parameters of this complementary
design are:v, b, b — r, v — &, b — 2r + A

R. C. Bose’s two theorems yield the following series of de-
signs. Those derivable from them by derivation and residuation
are not separately listed.



Desig-
nation v b r 3 A
7 6t + 3 (2t + 1)(3t + 1) 3t +1 3 1
T, 62+ 1 6t + 1) 3t 3 1
(If v is the power of a prime or £ odd.) \ \
D L+7 r(L+7) r 302
3 Oy
(1 + 1) = 0(3)] R4
RS
Fy 12¢ + 1 112t + 1) Ui 4 1
’ '::\ v
W
(12¢ + 1 is the power of 2 piifiig'and in G.F.(12¢ + 1)
there exists a primitive ot z for which =" +
1 = 2% q=1(2)) “‘:,’;:«
F, o+ 4  @FpEEDatT 4]
\ |
(4t + 1g the power of a prime.) - '
S
G, 20+ 1 3201 + 1) 5 5 1

L >

N .
i':}i‘ZOt + 1is the power of & prime and in G.F.(20t + 1)

\§ there exists a primitive root & for which z**" +

‘?‘:. 1 = ma, q = 1(2)

i”\’.‘“
Q,
VG o0t + 5 (6t+ D@+ s+1 5 1
(4¢ + 1 is the power of a prime.)
S, 4 + 3 4+ 3 a4+ 1 2+ 1 A

(4x + 318 the power of a prime.)
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Desig- _
nation v b T ic A

8 @D+ @+HDE@ED+1 2+ 2 A+ 2 A

(A=1orx=2)
Q"

O\
8. 2n2ex + 1) 202nh + 1) 2na + 1 20841 A

(v is the power of a prime p, z°> — L= 3 where
g. is & full residue system mod », and the differences
arising from n, , --- , n, mod pgre symmetrically
repeated each occurring once.) D

‘H:\l.
B, nt2  a+D w41 a41 A

A few designs in some of these series can also be constructed
by means of finite geometries* For the details of the construction
the reader is referred 6 R. C. Bose’s original paper.

The series T; and™T; do not, because of the restrictions on
T, and T, , cont#in all possible triple systems satisfying 7.12
and 7.13 althdugh it is known that all can be constructed.
However they ¢ontain all triple systems within that range of r
that has ga'far been found useful in the design of experiments.
The enéa D contains all possible triple systems with A = 2.
R. C ose made their construetion dependent on the solution
of two auxiliary problems, which were later solved by Bhatta-

~ charya (Sankhya V.6 pp. 313-314). The series 8, , &7, S, and
"some of the other designs yield further designs by residuation
and derivation. Although many of the designs constructed by
R. C. Bose had been previously obtained by other methods,
some of them were constructed by him for the first time. All
the designs with r < 10 known up to 1943 are tabulated in
Fisher and Yates’ Statistical Tables. In these tables 12 blanks
were still left, namely the following:
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Number* v b r k Y '

8 5 21 7 5 2
10 @2 92 71 7 2
12 91 28 8 6 2
14 o 2 8 8 2 LD
17 6 20 9 6 3,.O)
«\¢
20 95 25 9 9.9
N
24 46 69 9‘”:\;6* 1
26 a1 30 f00 7 3
27 51 @i* 10 10 3

28 :(51 45 10 8 2
QO
30, " 46 46 10 10 2

b 51 8 10 6 1
R

Thﬁ{gﬁmsibility of designs 8, 10, 14 has sinee been demon-
Sfjllaﬁ?d by R. K. Nandi and Q. M. Husain in several papers
~which appeared in the 1946 sssues of Sankhya* The designs
\J%, 20, 26, 27 were constructed by Bhattacharya. (Sankhya

V 7 pp. 423-424). The last two as follows:

*Reference Number in Fisher and Yates Tables.

*In a forthooming paper to appesr in the Canad. J. of Math. Chowla
and Ryser prove that a symmetrical design with even v is imposgible unless
k - X is a square. This shows that also the design 30 is impossible.
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The design (31, 31, 10, 10, 3) can be obtained from the
blocks:

Ba=(11;21:41;12:22;42:13;23;43104);
Bl=(11}61}22!52133}43.?34!54?641ml)?

Bz=(21,51,32,42,13:63,34;54,64,mz),
ne .Y
=(31941112162123}53:34;54;64!mi)”} ‘

by forming the blocks B, mod 7 and then adj mmng the blocks
.\

B{ (01;11121131:41:51:61:ml?mi’-; 3):
~

Bé:(02,12,22}32,42’52,%;,ml,002,003),

B-'; (03?13?23:33)43153163300;°°2}DG3)°

From this design the de51gn (21 30, 10, 7, 3) can be obtained
by residuation. NNy
Although 2 great muy demgns are now available, necessary

and sufficient conghhons for the existence of an incomplete
balanced block \Lb&ugn with given parameters », b, r, k, A are
not known. Equations 7.12 and 7.13 are necessary eonditions.
The inequality 7.14 must also hold if » > & We shall prove
it now..I'he inequality b > v is, because of 7.12, equivalent
o r\rz;l\‘k We number the blocks and consider the number ;
of glements common to the first and the 7th block.
L ¥rom 9.22 and 9.23 it follows that

2 i =k~ 1k 47— N,

From 9.22 it also follows that k(r — 1)/(b — 1) is the mean
of the variable a; and therefore

k_H’Q_I)k“Hr—)\)zM'

028 >di2 A
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From 7.13 we have (r — A) = rk — A and this substituted
in 9.24 yields

(9.25) K — 1) — k(" 1) > Ay — )
and _
(& —-1 _ N
(9.26) kr — 1) BTl > Ay — k). A
“'\\..:‘,
From 7.12 we have \ \}
b—1 _ 1 ' . \:\
(9.27) y — k - k . \\\/
\,} v
Since v — k > 0 we may divide 9.26 by, k and obtain
on account of 9.27 \{}
(9.30) or — 1) 2 M{,x} 1.

Subtracting from this 7.13 yieiﬁs
9.31) r(r = 1(3) > Ab — v
but b — v)/o = (r f’{k) 7k by 7.12 and therefore

(9.32) :\:\\r r— k) > %(r - k),
(9.33) r— Blr — W) 2 0. '

S{&ekr —Ww =712 >0itfollowsthatr2k.



CHAPTER X
Non-orthogonal Data

THE r-way crasstrcarron design wtih an equal number of
replications in every subclass is the best available design fO(
investigating the effect of classifications, However, it is ubt
always possible to keep the numbers in the subclasses, edquial.
Suppose for instance that we wish to measure the vatiation in
the weights of pigs at birth according to sex and‘li‘tfer. It is
of course not possible to preseribe the litter size ’an& the number
of males in a litter. Thus we obtain a twa way classification
design with unequal numbers in the subclagsés¥Such incomplete
data may also result from the fact t-hthefiginally 8 complete
layout, say a Latin square was plahned, but one or more
experiments miscarried so that solne\ebservations are missing.
Such data can also be analyzed with the help of the likelihood
ratio principle but the compg*taﬁons are much more lahorious
than those described in the preceding chapters.

The solution of all problems of this kind requires, as shown
in Chapter 1V, the ﬁI{djng of Q. and @, — @, . That is to say
we have to minimi{é:a quadratie form

N

(10.1) .‘.\“’.:’Q = Z} (ya - Z: ﬁ«xm)z-

under ;'h;é}a;strictions
L
(\1‘02) -21 iy = 0 w=1 ... <k rank {(¢,;) = r.

N e
\
\3

The minimum of ¢ with respect to the 3; is denoted by @,
if 10.2 denotes the restrictions imposed by the assumptions and

Q. if 10.2 denotes the restrictions imposed by assumption and
hypothesis,

We shall prove the following theorem.
130
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TuporeMm 10.1: Let 8 be the minimum of Q with respect lo the
8, under the restrictions 10.2. Let

Opy = Z Toalga - for & Z P >"01 k Z q > 0.

o=l

N
(103) G = Gog = 2 Yalea »
a=1

N
Gos = 2 (O
a=1 ) 'M\\ o
Then \>
&)
¥ 2
(10.4) g=2 O
AOD '\'\';
4
where \\\
Qg0 O G 0 % 0
O\
7N N
T 1 15 \ 00 Cr1
N
N
. R
-
(10.5) A=|aw adN om S e Cer
9,
Og\ 1 e O 0
hN
N
“.\3 .
'\sl . ] - "
&
OY 1o e w00 0

‘mi&m is the minor of g tn (&)
pplymg the method of Lagrange operators we have

</ (aﬂp)m-sq

(10.6) _ 2(%09 + gayqﬁq) + Z} Nr

+ ): AuCasp

=1

:0., p=1,""k!

where as usual the caret denotes maximum Likelihood estimates.
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We multlply the pth equation by 3, and sum over p. Sinee
2 6w B, = O this yields

(10.7) - Z acyﬁp + E Z a’vqéhgu = {).
We now expand S and obtain
k R . 'A\
_ S=00w—223 af,+ > 3 a5, . \
(10.8) R,
= fyy — anaﬁp- .‘\}
» 'N‘\

v 2

Hence we obtain the followmg system of & —}-'\a"\} 1 equatzons
for the k + 7 4+ 1 quantities 8, = 1, 3, , .\3} AS2, o N/2
(8 ~ @), + Z Gn»ﬁf:\
\\'

(109) _aul’ﬁ“-i-zawﬁq—i_ g&'cap=0; pr=1 -,k

«,.
&N

s::,“:‘ Z cuaﬁq = 0:I' U = -]-; T
¢

Sinee §, = 1 tl}i&\;system has a non-trivial solution and it
follows that i\\\'

~‘x
STJ&% oy -+ ag 0 SR
P
N
= ay R O L
w\{l
Y T '
O
s‘\"
Nt
'\’/ — Qo @y e Ter  Cqyp e Cop = 0.
0 cll C[,‘- O U'
0. e, e 0 0
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'It follows that

2 A
»‘)Agg'_A=0’ S=E:;-

In applying this result to an r-way classification, one may
use to advantage the following notation. Let '

1 if y, is in the

. raw | ]ass
10.19 Biyy tor s G, Ol8
( ) OfthEM,"‘,’l_,'.\“\
@ =1 (it = classification N\
0 otherwise, \‘
where g, , - - - , yw arc the observations. Then with ;..'.ﬁ.?i{\‘.\ S i
G, 0;0) defined as in Chapter V we have 4 :
. RN
0-2(r.-L T T )
@ g- >-l’!r L5 1 N N 34 1

(10.13) Y

-(a)“"!»‘“-ﬁs:f‘h.---.ﬂiﬂ}H@g’,' ce g @iy T Giﬁ))

1 addition to the restrictien:é “n 5.3 there may be other re-

strietions imposed by t{he’\hypothesis. I A, Do, A’,.Aﬁo 'are'
the determinants of Theorem 10.1 under the restrictions 1m-
posed on the u(dy , A % 3 Gy *77 a,,) under the assumption

and the hypotheéis Tespectively and if ¢ and & respectively are
then

the number of independent linear restrictions,

"\ .
4 _ E A’/Aéa - .&/ﬁgo

(10.12) AN
(10.12) £ F =850

ha§ ﬁbY Theorem 4.1 the F distribution and the test based on
P s the likelihood ratio test. ' .
Although Theorem 10.1 yields very neat mathemetical for-

mulae the numerical evaluation of A and A, although fea§ible
with modern computational techniques, is rather laborious.

There are several cases in which the golution can better be

obtained by operating direcily on the least square equations.

A special ease in which the least square equations can easily
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be solved directly is the case of an r-way design with proper-
tional class frequencies in the subclasses. We shall indicate
the treatment in the case of a two-way design. If the class
frequencies are proportional we may write the number of ob-

servations in the ¢th row and jth column (i = 1, -+- [ r;j =1,
yk)asnenm.; .
It will be convenient to use the following definitions. Q.

- = L Es ﬂs-#ﬂ' . E"‘ ﬂ“m.u'im + E Zmn m;ﬁtm R
Hij Wi Z‘ n,. .Zmn'm Z .. Em .

F_"' = g — Ee Nyfien Emnmpm E"‘ﬂ Feombbem
MRESEED STV y i) 3. o

| (10.13)

N

\ 3

; = n. Z ,. For Em m#uﬁl E Zm Toa omflem
N N 2o e Em‘n,., D e Doty

- Zc Ny ply. En m#m Z Em Ty Fembbom
Bome Ton. %”Em Dt Do Tem

where,u(l 2;4,j5) = F'll': F(l ) =, #(2).7) = p; in 8.3,
It is easily verified thqt with these definitions

En: §\j\ Z ﬂ..,,u;, z n,.].l,—. = Z n.,—ﬁ.,— - 0,

(10.19) .
SO et g = Ry R B R

}’%,; denote the lth ohservation in the #th row and jth
colu' and put

\ -1 I S
\ M Y nn.; z;: Y:rl H Y:-- = e Z,- " z Z Yi.l"

ko1

1
Y"" - n. E‘_ n,. E E Yia s

kL

Y= Z‘ n.‘-lz:;n.,- Z 2 z{ Y,.

r L
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then the assumption may be written as BY:) = p +
I T I T ol PO I ol and the least square
equations easily lead to .

-~

Hi,‘ - Y“,'. - Y,'-. -_ Y.,'. + Y,

-~

Ei- = Y| - Y, '

(10.15) o
- ' ¢(\N
E ;= Y.;. i Y,. "\
o= Y. o

Thus §, = Ee Z:‘ Ei (Yise — Y,;.)". The J:‘a'.i y Mio g Mei g

4 can be found from 10.13 utilizing the @t)qétions in 5.3.

— E! ﬁ-ﬂ' _ Zn‘ ﬁi;l}_i_ ZG Em Edm
r N Y rk

H

I S
- Es ;c’::};_’ Em ﬁim . Za Zm ﬁam
Bio = e T ¥ k P
(10.16) o) i
— X\Zc En’ Zm E'm _ Ec Em Ham
S & r k rk ’
A\ _
’t\'“: — A He- " I('-'m Zs Eﬂ _r‘;'am
v M + E-r# + _E_-r + rk ’

A
T}}é details of the derivations and the discussions of 1Ehe tests
”'\?f}arious hypotheses are left to the reader as an exercise.

\/ Sometimes one or more experiments of & complete layout mis-

carry. Tt is then often still possible without excessive labor to
ns. As an example we

solve the resuliing least square equatio )

shall consider the case of an m gided Latin square in which
only one observation is missing. We shall assume that this is
the observation in the 1st row, 1st column aad on the lst

variety.
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We denote by V..., Y.,., ¥..; the sum of all observations
in the ith row, sth column, ¢th variety respectively, and by ¥
the sum of all observations. Tet 7, , ¢; , v; , denote the least
square estimates of the effects of the 7th row, ¢th colummn, and
ith variety respeclively and v the least square estimate of the
general mean. The least square equations resulting from 7.1

are, on account of Theorem 4.5, QO
. 2\ \'
Y4+nrnteatonn—m—-1e=0 - N7~
W
Yio—mr +rn4e 40— (m— D= (]',
A\
\:\ S
Y.~ me +r+e o — (mTw = 0,
N

Y..l—mvl-i"rl-}-cl—i-v. \(m—~1)v—0

»
N\

Yie — mr; — =‘O.,~jf~ F=2- - m,
o0
Y.,'. -_ mc,— — ﬂ}f‘?s& 0’
2\
Y. — ?ni’i:-;\* my = 0,
O

From the ﬁrét«equatmn weobtainr, + v, 4+ ¢, = (m° — De —
Y. Substlisilltﬁi’g this in the following 3 equations we find:
'S mr, = Y.+ m{m— Iy — 7,

O
RN\ mey = Y., +mim — 1w - Y,
...\j W ]
\/ my; =Y., + mm— 1w — Y,

Thus m{m* —~ v — m¥ = Y,. + V.. + Y., +
3m{m — 1)y — 3Y, Hence

_ Y.+ Y.+ Y., -i—(m-—S)Y
m(m-1)(m-2)
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Thus finally
p o= NY,..+ Y.+ ¥, Y
m{m — 2) ’
o = Yo+ m—DYy + Y0¥
mim — 2) ’
by = Vit Yot (m-D¥on=¥ \ ¢
) T ,\ N\
mim — 2) N\
and forj > 2 R '7;:
’ m m{m — Dim — 2 !
K7
o= Yo Y,..+ Y.+ Yogsk (m = 3Y
' m mim — Lm — 2) ’
LYy Yt Vol V., 4 (m = 3)Y
' m aifm — Iyim — 2) '

In testing the hypot[f&is p,=00=1,"" m) one obtains
an analogous resultofeor ; and ¢; - The test of the hypothesis
v, = 1, I8 best.,b};,rﬁed out by utilizing ‘Theorem 4.3 and 1ts
corollary. The, details of the analysis.are 1eft to the reader. A
detailed di§emdsion of the analysis of TLatin squares when some '
observatiohs are missing is given by D. B. Delury (Journal of

theémxrican Statistical Association, Vol. 41, Pp- 370-389). A
getieral method for the treatment of missing observations was

<‘gWen by F. Yates (Empire Jour. Experimental Agrie., Vol. 1,
1933).
Yates proceeds as follows:
equation

Suppose we have & regressione

— 1’ P ,n

(10'17) E(ya) = g giaﬁi @

) Y are

and suppose further that the observations %1, "
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missing, Differentiation of @ = 2., (H« — D Gl with
respect to the 8; yields the least square equations

(1018) 20 giate = 2, 2 Gralliabs G =1, -, 9.

Differentiation of  with respeet to %, , - - - , % which we also
regard as unknown parameters yields the additional equationg,
(10.19) Yo = Z GiaBiy, a=1, - k. ',\"‘“‘\

N

We may first selve 10.18 for the 3. and then subsmtute the
values of 8; so obtained into 10.19. Thus we obta{n A equations
for the k unknown quantities y, , -+ , ¥ and\the solutions to
these equations are the least square estlma\es ol 4y, ) ¥

This method is particularly advantag\qﬁs in the case of de-
signs where the expressions for the Bare already known.

We shall exemplify Yates method\int a Latin square with one
observation mLSsmg We obtain frOrn 7.2 and 10,19 for the least
square estimate Yy, of Ym .;:j‘

Y = 3?111 + + Y—l- + Y—-l — 2?111 _ g
111 ‘ \ m m2 m2 H

o ..}12 Y+ Yoy + Y., 2V
111 (m'._m 1)(m o 2) m m2 N

Substltutmé"?m for ¥,;; in 7.2 one then obtains equations for
Vi, € Vﬁ The reader may verify that these equations are the
same\that were previously derived by a direet application of
tke maximum likelihood prineiple.

Q”



CHAPTER XI
Factorial Experiments

It wiLL BE coNVENIENT in this as in the previous chapters
o use the picturc of an agricultural field experiment. This is
done to give the reader a concrete picture but should not be
taken to imply {hint the use of the designs presented is restricted , \
to agricultural experimentation. O

Suppose that the influence of m factors, say m dlﬁ’erc;nt
fertilizers, on the yield of wheat is to be tested. Each of theése
factors may be applied on different levels. Let thf,%h factor
be applied on ¢; levels, so that all in all 4%, - t treatment
eombingtions are posmble /

If we consider the 7th level of the ath fac‘tol’ s the #th class
of the ath classification in an m way clagsification design, we
¢an use the methods of analysis of Chapter V. The estimates
of the main effi,(,ts and 1nteract10n&A(1 ety T 8a}
appearing in 5.5 are linear fqrms of the observatlons of the
form "

w

(11'1) E Z la\\ a,x(l . a'.bi PR ba)!.

by

where z(1, ... (N '51 , -« , ba) is defined as in Chapter 5.
We proceed, Qti\compute the coefﬁment of (1, <+, 8 8+t 1,
.“’a’q\ NI P a*l:”' rx)(b ;éa:r)lnA(l sty O

Biyees i . ¢.). This term occcurs as a qummand in all 2k , "‘1,
ks WS -, a,,) where &y -+, kg isa combination out of

\0;;, s and it occurs there w11;h the coefficient (s ikﬁ){'

t.). Hence using the notation of Chapter 5, the coefﬁclen
ﬂfz( .“!3:5*}’1, ERIY. 1 TP G.;bnl}" b,) in
AQ, - , 058, , -r- , @) I8y be written as

wd by I
T Senhi

& fimD
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Thus

Z lﬂh"‘-ﬂcﬁc+lbc+=.‘“,bﬂ

441

(11.2) (Z 3 (- 1)“*"*“,, t”)(rm—n

.8 =10
N
#+1
+o2 1)”3“”‘—'{?'
#+1 B=0 ‘o

By splitting the second term on the right side. Qf 11 2 into
terms for which %, = s -+ 1 and terms for whmh ks <s+1
one obtains Y ... Liarcsrioriss = 0. Snﬁ}larly one proves
that the coeflicients lo, -3 &Ppearing in 11 Q! satisfy the equation

(11.8) ): bijepe =0 4 =‘1

We generalize the concept ofs mtela,ctxon and define: Any
linear form J»

(114) L = Z Eza; aax(il; TRy im;ai y ° T :a’nf)

which ts not tdentzaﬂly 0 will be termed a component of the inter-
action belween @tﬁcﬂms T,y il

(11.5) ~Z levirae =0 =1, -+, &

for alﬁc?amces R T S
{w.a linear forms
¥ ".\ 1 n
AN . &z and > b
"‘\' w4 k=1 jmi
are called orthogonal if

(11.6) 3 a,b, = 0.

k=1

Tamonem 11.1: Two interaction components G and H belonging
to two different sets of factors are orthogonal.
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We may always arrange the notation so that @ is a com-
ponent of the interaction of the factors 1, 2, .-+ w.and H
o the factors p, » + 1, «-- , v where p > 1. Let-

7= E.LS’J“ = Z s Z In.,..._a,x(lp .-u; G;l ) .s_a‘u)!

= E Pox, = E E la,,---.a.x(p! Uiy, ). . 2\

F2, = Zuoon then Lo = loyaSluss -+ tn . Thus writing O\
Y= max (H, U) . : - \..\' i
(zi ree tu)(tv e tv}(tuwl - tm) : : ”S .

a}:’ az,: ; lm_::‘szl,,,?.f.,,,..’—j 0 .
by LL5. &N
Lemma 11.1: Jf L, , -+ -, L, are a-ar‘i!h(;!g:(J<ﬁv?l;]:r to L t}wnzs ?\sﬂi

# orthogonal to L for all values hy ) - ¢ S

The proof of Lemma 11.1 is leftito the reader. = -~
Solving the equalions 116 we may choose arb?tljml-y ﬁ-m
Wanities ..., for a, & — 1. The equations 115 can
then be satisfied b ptx%\tifig suceessively " I

LD <y
Ema.'--.ua = o 2, loos,sivioa 1 @y < by ; Qe ar
£ Ja.=1 .
::\..0 -
poy &/ _ C
£ ) il ’
N/ LA a < ia ?
Eﬂlh."',ﬂ ’\-_ - Zaxa:,-.-,aa 1 s < tﬂj T .
K = -
NS
\"'\.s.;
E te—1
“'»"'.an_,g& - - E lalﬂ,,---‘aa .
ag=1

B
, Thus the equations 11.5 have exactly t Iagoluﬁé.‘(j of 11.5

Idependent solutions. That means thaf every



S

=R
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can be expressed as a linear combination of any (3, — 1) ...
{(f. — 1) linearly independent solutions. By the method wsed
in the proof of lemma 4.1 we can therefore find a system §
of (t, — 1) --- {t. — 1) normalized orthogonal Hinear forms
such that every form in S is a component of the interaction
between the factors ¢, , -+ , 7, and such that cvery compongnt
of such an interaction is a linear combination of forms in“{he
gystem S. O\

The interaction components of different factors are ¢tthogonal
to each other and hence linearly independent. Tilus together
with the mean we cbtain P\

"

1+i Z (‘fl_l)".(t“k_\l)‘z.iltzj.u-’tm

k=1 1,ere,m »
A

independent linear forms and the;‘éfa'e any linear funetion of
the observations may be expressed as a linear combination of
the mean and any set of (£, <%%%,) — 1 linearly independent
interactions. ”

In considering the analysis of factorial designs we may
therefore consider thie. following general problem. Given #
normally distributed>random variables z, , --- , x, all with
the same variance but different means, We know that certain
linear forms jing, -+ - z,

y ‘:\ 4 "
(118) N L, = Ea‘.’.x’. 1 = 1’ see 8
O =1
‘h,;a% the mean value 0. We wish to test, whether certain other
\wﬁlf!'ms
(11.9) L«=Zaux,- i=s8+1,--,r
=1

also have mean valze 0,

In the first place we may eliminate, from the assumption
and hypothesis successively, forms such that L, , -« , L)
Lysr s <+, L. may be assumed to be independent. Next we
may orthogonalize and normalize the assumption and hy-
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pothesis by the method used in the proof of lemma 4.1. We
may then add n — r linear forms

L,--——Ea”xf 3."_-'?"'{’1,"',?1.

f=1

such that the matrix

&y - L3P .
) )
N\
("'}s
Tur =" Dpn .':~“
A\
is orthogonal. Then NG
3 AN,
Q=2 (- B@) = X UG ELY
i=i i=1‘..’\
Thus ) ::‘: v’
Q“ = z Lf H Qr - Qa = E:"L? and P = -—8-— LQ_'..-___Q.E
o st r—s @

is the likelihood ratiosgtatistic for testing the hypothesis
E(L)y=0:i=3s5+ 1,{-’;\- , ) under the assumption E(L.} = 0,
(=1, .--,8. L\

In the analysis eof factorial experiments we shall always put

A/
£ D . En
N L, = 37;"_':_1/2_‘*‘__
A& 7
80 thai\\tl;e sum of the coefficients of L, , -+ , L, is ¢ because
9(%5}1‘(% orthogonality.
“\We then consider the mean yield E(z.) as composed of the

treatment effect T, and the block effect b. due to the soil
fertility of the ath block. The experiment is replicated in k
different blocks each containing a complete replieation of all
trestments. We shall denote by z¢ the value observed under
the sth treatment in the oth block and put Ll? L=
Lixf, - -, x2). Then since Ly = (w8 + - + Ty /n" we

see that B(L®) = LTy, -+, T) = Sfori =2 -, n
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and BE(LY) = LT, -+, ) + 2% b, = S, 4+ #wMp
Let L; be the mean of all L® then

Q=3 3 e =Ty — by

o] i=1

L] " _ n _ . .\
P IPIICIED AL SE A LR
a=1 i=2 i=f RGN
, O
+ 2 IF — 8, 7w,
=1 .“,' ¢
If we now test the hypothesis S,,, = - - -,“*%\S,,m = ( under
the assumption S, = .- = 8, = 0 then
Aoon L ::\\‘: ko
Q= 3 2 - L&Fr XL,
w=1 4= “‘} G
".’“'wk“‘ _
Q —Q=h > L.
&N i=k+1

Thus @, has (k — 1) P M — D{n — 1) degrees of freedom
and ¢, — @, has u{degrees of freedom. Note that more than
one replication iy éeded unless certain of the S, are known
to be 0. ‘ \

We recall \that one of the necessary assumptions of the
analysis wag4he uniformity of the soil. If the number of ireat-
ment combinations is large then the blocks become too large
to E{&l}(’ this assumption. In this case one conducts the ex-
pefilnent in several blocks containing among themselves a

',\'éﬁhlplete replication and resorts to the technique of confound-
"\Ming linear forms of the treatment effects in which one is not
N/ interested,

A linear form

8§ = Z .7,

well be called confounded in the block B, if a; = ¢, whenever
T; ds the effect of a treatment applied in the ath block B, . A
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 Jinear Jorm S will be called arthogonal to B, +f ch n, @ = 0
A linear form S = Z.— a. T, is called normalized if E,- a: = 1.

Lemma 11.2: If Sy, --+ , S, are confounded in the block B
' jhen any lineor function S = WS + -+ + A.S, 7s also eon-
founded in B

The proof of Lemma }1.2 is left to the reader.

Lemma 11.3: /f Ly, -+ , Ly, are n arthogonal Junctions of the
variables T, , -+ - , ¥ ond L is orthogonal to Ly then O’
11.10 L=al,+ -+ tlLa. \

z? 0\ ?
Proof: Sinee Lo, --- , L, are independent we cé’r‘t}inly have

L= G;Ll + - -+ a”L" . Let L = Z.‘ lgl‘,‘g\ L’# = Z:’ Apie
then 3 s Addus = Dok @ Do Auihae = G Z<m, Thus

(11.11 . = 2O
) a S0

Since L is orthogonal to L, we p}'ﬁéﬁ have g, = 0.

Tarorem 11.2: If 8., S£% 2., 8, is a system of orthogonal

linear forms in the treatmeept effects Ti, - - T, and Sy, S,
v, 8, are confou st the blocks B, , -+~ , B, consisting of

& complete replicatiph, of the treatments, then S,a1, *0 0, S, are
orthogonal to thesédblocks.
Proof: T :S‘f (7 = 1 -+ v) be the sum of the treatment

effects of althe treatments in the dth block then Sy, - »
8, are lmear functions of 8{, -+-, S, . However gince .S.l ,
++ 28, are independent we may express 81, ©*° 3¢ also by

) , 8, . Therefore by Lemma 11.1 S, -, S8 are orthog-
ofal to S,pp, ***  Su- :

Suppose now that we are interested in eertain linear functions
Seer, - -+, Bous of the treatment effects T, -+, To, % = U'¥
and wish to arrange our experiment in v blocks of u treatments
each. We may assume thab S0, "0y Sees are normalized and

orthogonal to each other. We first add forms &, -*" S,

8yuus1, <+ , S, in order to obtain a set of n normalized orthog-
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onal forms. Suppose that we can find an arrangement of the
treatments in » blocks such that 8, , --- | 8, are confounded
in all the blocks. Then §,,,, --- , S, will be orthogonal to all
the bloeks by Theorem 11.2,
Let y, denote the yield of the ath plot and consider
" Q"
(11.12) Q=2 (o — Ta— 1), .
el 2 AN
where T is the effect of the treatment applied to F-lxé‘at-h plot
and b, is the effect of the block in which the athplet lies. Let

<

Se = 2ptagTsand put L, = 35 tosys . Theiy
(11.13) Q=3 (L, ~ 8. — b> ey

AY
If L, is orthogonal to all the hl4cks then D0 tughsy =
225 b Lgest tas = 0. If L, isp6tfounded in all the blocks
ther f.s = ¢,; whenever iy = J. Hence

(11.14) S tasbySu Y eb;
[ &N i

Buji the linear forms“L’,‘,: .. , L, are orthogonal and therefore
the matrix (e, is{an orthogonal matrix and hence non-
singular. We ean t\heiefore always solve the system of equations

La.’—.S¢=ch“,‘b,‘ C!=1,"‘,f)

AS
whatevp(the value of 8, . Thus in minimizing @ under ccrtain
assymaptions on 8,,,, .-+, 8,,, with respeet to the S, and b,
wemay always choose the b, so that the first p terms of 11.13
wanish. We therefore heed only minimize
AN

N

U 1.1y Q = 3 (L, — 8.

a=g+]
The same argument also applies if the experiment is replicated
several times. We shall formulate this result as

TEEOREM 11.3; Let 2, y Tty Tue be uv observations from v
defferent blocks B , -+ | B, of u observations each obtuined in
applying the treatments T, , - - » Tuo respectively. Let S, , - ,
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8., be uv normalized orthogonal forms S, = D5 tesTs in the
treatment effects T, , -+ -, T\, and assume that S, , -, S, are
confounded in all blocks.

If the hypothesis S, = 0, a = v + E+1,---,e+k+s
is lested under the assumption Sg = 0,2 = v+ L, -+, v+ kK
Bliz,) = Ta + b., , then

vtk prkta '}
Q"‘zzLi! Qrﬂ_QG___TELi: o
v+i EETT 3 2N
AN
where
Lu = Z taﬁxg . '3:'? ’
] o\
Ij the experiment is replicated r times and Lyvs the value of
L, in the ith replication then N
#+k - 7 "".\M —
Q. =r Z Li + Z ;Z’(:Lai - L'at)g,
a=rtl a=v+{ 1
(11.16) Ny
Vg vikts
Q — Q,u"‘? r Loy
- . rik+1
where K
O .
=iy
i=1

v

Thus if Wél\a;i'e interested in the linear forms S.i1, "7

S,k and..{ﬁkﬁ to arrange the treatments r,, -, T.,intos
bIOGkS.‘\i(:&have to find v linear forms 8, , <+, 8, orthogonal

t0 Sy | -+, S..e 2nd a design with » blocks where Sy, -~ ,
Siare confounded in all the blocks. Since the mean is always
<\l§0ﬁf0unded this can only be possible if S,y oty Sors are
orthogonal to the mean, that is to say if the sum of the eo-

efficients of Soi1, <« s Does vanishes. ‘
In the case of a factorial experiment the method of aftack is

as follows. If 8, = 3. tsTs then we first form the linear
forms L, = D stas%a . Let I, - ,l.bea complete normalized
system of interaction components as constructed at the be-

‘ginning of thiz chapter. Then
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(11.17) L, = X ugly a=v+1,--,0+%
&

with certain values of the u,s . If it is possible to confound v
interaction componenis which have the coefficlient 0 in al]
equations of the system 11.17, then L, and thus also S,

/

fe-= o4 1, --- , v + k} will be orthogonal to =1l the blocks
by Theorem 11.2. The L, are by Theorem 11.1 and Iemnufs
11.1 orthogonal to all the components say I, , -+, I. of Int\er-

actions which de not enter in 11.17. The L,, ma) Jilleri“be
orthogonalized and normalized so that Theorem 1133 Mpplies.
If the experiment is replicated we may have to “add some
funetions of the interaction components 1 r+l\z . T tO
obtain a complete normalized orthogonal sxstem.

The linear forms of interest to the expe\nmenter arc usually
the main effects and 1st order interaet (il:lb themselves or linear
combinations of them. Thus it $8(important to construet
designs where only inferactions of\order 2 or higher are con-

- founded. The problem of consfhicting such designs when ail
factors are at two or threeg]'ei'rels respectively was solved by
F. Yates (The Design and{Analysis of Factorial Experiments,
Technical Communicafion No. 35, Imperial Bureau of Soil
Science). Yates’ pubhbatlon eontains also many examples and
presents in detaa}\bﬁi(,lent methods of eomputation applicable
to factorial degims. The more general problem of confounding
only mteractqons of order 2 or higher in designs where each
factor is,ab-s levels and s is the power of a prime p was first
soly ’by R. A. Fisher (Ann. of Fugenics (1945) 12, pp. 376-
381 \An alternative method has heen given by Radhaknahna
Rao (Sa,nkhya 11 pp. 67-78). In the following we shall present

-~ (Rao’s method.

\ Tetop =0, = 1, a;, --- , a,-, be the elements of G.F.(s).
Denote the levels of tho factors by o , --- , @,_; and let
ylas, -+ @) be the observations with the first factor at the
a;, st level, the 2nd factor at the «,, nd level and so on. Con-
sider then for every «; the set of observations Yourronw WhHETE
Ty tv, Ty satisfy the cquation

T
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(1118) bha, + -+ + bur,, = o;,

JF=10 - !8_13515_’50:"‘,-5&#0.

Corresponding to the s different values of a; we obtain s sets
of observations M, , ---, M, and each observation is contained
in exactly one of the M, . Consider now any orthogonal matrix
Ma(l, § = 1, -+, s) whose first row is (s7% -.. | sV3), Let
Ty, +-+ , T, stand for the sum of all observations y,....,

whose indices satisfy the cquation 11.18 with j = @, \ ,‘\

s — I respectively and consider the expressions « N
N

(11.19) Li= 2T =15 2D
i=1 : ,\

We shall prove that L, , --- , L, are all components of the
interaetion between the factors ¢, , «-+ , /> All observations
with any fixed values z,, , --- , 2., musgtdie'in T, if one of them
does, Hence L, = ». »,T; are ]in'ezjfforms in the means
Yo, o, G, o, o) Keeping now ;, , - , &, fixed .
and summing over the coefficient®of y(4,, - -+, 5 %5y * *  Tax)
with respect to z;, we obtaid ;E,- Xi; because if 2., takes all
values oy, - - -, @, thendNin 11.18 takes all values in G.F.(s).
Since 30, Ai; = O for g~ 2, --- , s 11.5 is fulfilled and the
Lii> 1in 11.19 ake therefore components of the interaction
between the 7, , - ¢, 7th factors. There are (s — 1)*™ systems

of coefﬁcients'bi\”,"'- -+, by leading to different functions L, ,
.ty L sinegheby , ---, ob, leads to the same functions as
by -+ B0y Thus there are (s — 1)° different interaction cc;)m*
o by

bonentg'obtained by taking all possible values for b, , - )
Thattthey are independent of each other and hence give a
cofaplete system of components of the interaction between the

Nastors ¢, , .-, 4, will be proved by showing that two inter-
action components belonging to two different coefficient sys-
tems are orthogonal to each other, Consider then

(]-1-20) ba, + -+ b, = a5

(11.21) e, 4 o0 bz =

Q
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Since the matrix

bl.r A

cl, ...’ck

is of rank 2 there is at least one 2 by 2 submatriz of rank 2.

Suppose therefore that £\
bh b . .‘\:\’
# 0. N
& G O
Then we may fix 2,, , -+ , 2., arbitrarily and thig coinpletely
determines x, , z; . Henee we obtain exag §7* points
{x, , -+, 2;) which satisfy 11.20 and 11,21 sn:nultaneously
Thusif T, --- , T, are the sums of all obEErvatlons satisfying
11.20 for ¢ = 0 -, 8 — 1 resp. and- DE , U, is similarly

defined for 11.21 and if Ly = 2. )\,,T Z Ao , Ll =
Y oAU = D bale . Then SJQCB“E A:; = 0 we must have

(11-22) Z Mabo: = 3’:_2:2 2 Aok = 0,
Tt

Thus L, is orthogona.}\’uo Li . We shall state this result as a
theorem. \\

TagorEM 11@yLet (b, , -+- , b,) be any sef of m elemenis of
G.F.{s), not all 0, and consider the seis M, of pornds (2, , -+« , &)
in E.G, (m\&) satisfying the equation b

'\\~ b+ o+ bz =

:r{syi.' where ey , v+, o, are the marks of G.F.(s). Let

\'"\3 (2, «++ , x.) stand for the treatment combination having the ath
Jactor ai the level . and let (M;;) be an orthogonal s X s matriz
whose first row s (1/6'%, - | 1/s"%) and let T, be the sum of
all observations y.,...., where (&, , +-- , z.) s in M, . Then
the functions L; = 3., AT, are components of the inferacion
between the faciors 4, , -+ , 4, & b;, 5 0 (@ =1, -,k and
b =0forj =i, ,(a=1, .-, k.
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The tnderaction component L, will be said to correspond to the
point (by, ~ -+, bu) of P.G.(m, s). Pwo interaction components
correspondmg zo different points are orthogonal.

We consider the solutions of the system
baty + - - + b = o, ,
(11.23) i=1 - u<m, rank (b;) = u.
;i , by CGE.(s). - ¢\ \

" golutions for z, , -+, &, . If we SO}V@ H 23

my

There arc s
for all combinations (ay, , -+, o) we obtain & set-.s‘of s
treatment combinations each. If these are taken as &EContents
of s blocks then the set of interaetion componcnts corre-

sponding to any linear combination D _; A (b.\ Py bia) will
be confounded in all the blocks. Thus (8" &4 }) s — 1) sets of
interaction components will be confpunded giving (s — 1)

"= D/f{s — 1) = s* — 1 or with thé mean s* independent
orthogonal functions confoundediThe remaining ones are
orthogonal to all the blocks by heorem 11.2.

We wish to confound only- dnteractions between ai least 3
factors. We put w = m A% and assume that m < (' — 1)/
{s = 1). There are (s* A 1V/(s — 1) linear forms in the variables
Ly, -0, x with c&}ﬁuents in G.F.(s) independent in pairs.
From these we cHodse m and each of these forms will now be
identified w ith’aJdctor. We then consider all points (z; ; -+~ , o)
Fwhere g, | - :\ x, are elements of G.F.(s). Let

& .
O I,=Zaﬁ-ﬂk i=1:,m
k=

o N . .
“de“the m linear forms chosen. In substituting the pomts
o, -4, 2} we obtain

(11.24¢

o
(11.25) Z oty = Ui -

Thus we obtain a set S of s* Pﬂmts of E.G.(m, ). We shall

show that
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1.) 8 4s q subspace of In.G.(m, s).
2} To every pair Y., ¥; 1, § < m there are exactly 5°~° points
in 8 which contain both y: as ith coordinate and y, as jth co-

ordinale,

Proofof 1. Lty , ¢ , ¥n i, ** ¢, 7= be two points in &,
Then there are two points (z{’, <+ l’) and (x{®, -, :cf’)
in E.G.{t, s) such that

2 ana = Ay ; Z aare’ = pz, Oy
* i\
~ hence ~\°
E .k(xm + xég)) = N+ opz '
¥ ~\

Thus {Ay: + we.} is a point of 8 which proves 1.

The number of points in S contammg@ as ith coordinate
and y; as jth coordinate iz the number of solutionz of the
equations O

-

Zd,k% = Y:,

k:k -

(11.26) Q

L\“ Zam=y;-

Since L and L; :;Lr\mdf :pendent there are exactly s'* solutions.
Thus 2 is prow qd
The poipti@]’,’ 0, «--,0) isin S. Let the point (g, , -+ , ¥m)
correspond to the experiment where the sth factor is on the
y.th level, where the elements of G.F.(s) are numbered in
some arbifrary way. Let the blocks be constructed as follows.
’Rak( S as the initial block. To obtain the second block take
\‘a‘ny point P not in 8 and add it to all the points in & We
shall denote the second block by (S 4 P). If there is a point
@2 left which is neither in S nor in (8 + P) form (S + @) and
continue the process until all points of .3, (m, ) are exhausted.
Since 5 is a subspace it follows easily that any two sets (S + ),
{8 + @) are cither identical or have no point in common. Thus
the sefs obtained by our construction have no point in common.
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If the interaction components belongig to b, , «-- , b, are

confounded in S then for all points (3, , -+ , ¥w) in S we must
have, since S contains the point (G, 0, -- -, 0y,

blyl + e +bmym = 0-

Let the element 2, , -~ , Z» be an element of (8§ + F) then
by, + 20 + o F balym + Zm) = bz + 00 bz = 0
canst. The confounded interactions form the space orthogonal
to § whose dimension is m — &. Thus §™* interactions are.con=
founded. We shall show that only interactions between at\eéast
three fuctors are confounded. Otherwise we shbuld,'hél{re a b,
and b, not both equal to 0 such that R84
(11.27) bays + biy; = 0
N
for all points in S. But 8 contains a pp:?[iif with ith eoordinate
1 and jih coordinate 0. Hence b; =" and similarly &; = 0.
Thite only interactions between migre than 2 factors are con-
founded. ,':’:.' )

As an example we shall ga:ri"ﬁnge the 27 treatment combina-
tions of a three way eyperiment with every factor at three
levels into 3 blocks o Q}each so that only interactions between
3 factors are confodnded. We first have to find three independent
linear functions Of two variables, for instance

. .\::'\ 2,y &+ Y |
Next Wé:.\siibst-itute the points of E.C.(2, 3) into these lines
giving s the subset S of E.G.(3, 3) or the initial block of our
desigh
V ~ § = {ooo, 011, 022, 101, 112, 120, 202, 210, 221}

The other two blocké, are obtained by adding, mod 3, the points

111 and 222 t0 S

S 111 = {111, 122, 100, 212, 220, 201, 010, 021, 002}

i

§ + 292 = {222, 200, 211, 020, 001, 012, 121, 102, 110}



154

To find the confounded interactions we choose two inde-
pendent peints in 8, for instance, 011 and 181, and solve the
equation

a0+ b1+e¢-1=0

al+b-0+c1=0 ~
We obtain the solutions (a, b, ¢} = (112}, (221). Thus cu},b:/\the
two interaction components corresponding to (112)sahd*the
mean are confounded giving 3 orthogonal funetions g{srfféunded.

Rao gives in his paper a morc general method by which it is
often possible to confound only interactions ba&-‘%’cn more than
d factors where d may be larger than 2. \

If all treatment combinations are replicaled in several sets
of blocks each containing a complg@&replication, it is also
possible to confound some funetiongin some of the replications
and to leave them unconfound’ed"rri others. This techunique is
known as partial confounding:\The analysis of partially con-
founded designs is given byiformulae analogous to 11,16, where
however, L, is the mearwalue of L, over those blocks where
7,15 unconfoundedman the sum

e
&V _
PR M A S
L) i=1
extends o{ﬂy\ over the same blocks.

F. Yates has in his previously mentioned publication given
Val:'\ls'”designs where not all factors are at the same number
of levels and some of the main effects and interactions between

\2 factors are only partially, but never totally, confounded.

\‘;



CHAPTER XII

Randomized Designs, Randomized Blocks,
and Quasifactorial Designs

THE USE OF ORTHOGONAL LATIN SQUARES and balanced in- Q
complete block designs is only possible if the number of\
varicties, replications, and the block size fit into one of t,hes:é*
designs. In cascs where no suitable design of these two\types
can be found it is necessary to use other designs, some'ef which
will be discussed in this book. This usually entailda loss in
efficiency and sometimes also of mathematicahpreeision.

A design which can be accommodated bojany number of
varictics, any biock size, and any numbf;;*@f feplications can be
obtained by arranging the varieties\randomly over a field.
The assumption of the underlying linear hypothesis is then
given by N

A M
N

Ey:) =v; + 0+ p s Z‘_:”" = er 7 =0,
.imx\ _

where y,; is the_yield of the ith variety in the Jth_blnck, R
is the effect of e sth variety, n; the effect of the jth block,
4 the genersl {nean and the e; are norraally and independ-
ently dist-ri*kiufed variables with mean O and the same but
unknowd Viriance. Since the varieties are assigned at ra:r_ldom
o the'“‘k)\f)cks, the bloek cliect ; becomes & random variable.
Hoi\{iéver, n, takes if the blocks are of equal size any of b
’“‘1‘}&}1183, b, --- by , with equal probability and the_:ref?re we
cannot assume that yi; = ¥ — % — & ig normally dls’mbutc_sd.
AlSO gipirernyourern = Tnemi - If the blocks are of cqual size

each containing % varieties then :
' b3 1 ife=m
Pl = b my = b = om0 N e

155



156

Henee

— 2. bl

k= e _
Faens = Zm (%J} — 1))533”“ T ob(bk — 1)

Hence the y7; are not-independent. Thus it is not quite correct
to treat such a design as a one way classification design, the,
claszes being the varieties, as is usually done. The ohjeclions
raised against this treatment are not serious if the sample)is
large, but may affect the size of the critical region furgmall
samples. It must be admitted that one Intuitively f,(:gil‘s\'tha.t- &
minor deviation from the assumptions will not. gr()athy mfuence
the distribution of F. A rigorous study of thedeViation of F
as computed from such randomized designs\yom the distribu--
tion computed in Chapler I has not heen miade. The theoretical
statistician should not overleok the f:w(x %hat it iz immaterial
to the practical research worker whéther the size of his critical
region is exactly 597 or 1 or even’Z% more or less. At any rate
he cannot veto the use of slight}}i ‘Iinaceurate methods as long
as he has not succecded in re,pléfhing them by accurate ones.

A rigorous treatment of“he randomized design is possible
if we consider not blg(‘%{ but plot effeets and regard these as
chosen at random ffom a normal population of plot effects.
Under these asmgrﬁ ions we may lreat the design with com-
plete rigor as. A bne way classification design, We arc then
ignoring the\faclt that neighboring plots have similar plot
effects. THys “we ave intentionally using a mathematicnl model
whiche know to be slightly different from the true situation.
In ﬁ-kﬁ's\procedtlre we do, howevcer, not differ from the physicist
wha ¢omputes the laws of a freely falling body and intentionally

""(;:"lis{regards air frietion. Onc should also be aware of ihe fact,
N\ that our customary assumption of normality is at best an
approximation o the truth.

An improvement over complete randomization is the at-
rangement of the varieties in randomized blocks. In this ar-
rangement all varietics are replicated in each block and the
design is then treated as a two way classification design by
blocks and varieties. We then have to assume that the soil

N\
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fertility within the blocks is uniform. The position within the
block is chosen at random for each variety.

In all designg which are based on randomization only, the
cases a systematic arrangement, if available, is preferable.

In recent years the quasifactorial designs, particularly lattices
and lattice squares; have become very popular. In these designs
the technizues of partial confounding are utilized. As aDA
example suppose that we have ¢, varieties, These are arrangéd™
into a rectangle of g rows and g, columns for instayge\for
=3¢ =4 )

<

Vu e Vu .‘.‘j\'\.

(12.1) . o
i ' "
Val"'VM:nt': )
Two sets of blocks are formed’.f;Tfle first et contains ¢
blocks of ¢, varieties each. The \varieties in these bloeks are
those oceurring in the 1st, 211@133- .+, st rows of the rectangle.
The second set of blocks{tontains ¢ biocks with g, varieties
each and the blocks chrt@in the varieties In the lst, 2nd, --- ,
gand columnn of the’toctangle. Thus from 12.1 one obtains the

following hlocks: )
(Vll\zs::l\/l; ¥ V!B 1 Vl&)} (Vﬁ‘l ] V22 Il V23 ] VQ'!):'
\:':.\}‘ (Vsl 1 V.SB ] V33 ] Vﬂé—):
N : (Vu 3 V2l ' VSI); (Vm H V22 H VSZ)!
m‘: “\ (V13 ’ Vas Vsz); (Vm » Ve s VM)-
ated any number of fimes. We
tal effects as if they were the
levels respectively.
may write

) 3
The whole design may be replic
may formally consider the varie
result of the action of two factors at ¢ and g,
Thus if V., is the effect of the variety vi; we

Vi = i -+ Ui 4+ v,

(12.2) Ef)ii - 2?"” = E?).-. = Eﬂ.,‘ = 0,
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We may therefore regard the row set and the column set of
blocks as two complete replications of a factorial design. The
main effects of the first factor are confounded in the row set,
the main effects of the second factor in the column sel, the
interaction remains unconfounded in both sets. Thus applying
Theorem 11.3 with the modification appropriate to partially
confounded arrangements discussed at the end of Chapter XL\
we sce that, because of 5.9, we have to minimize AN

2.,
.\
Q= Z T T IDAW 2500 @) = v ]2 7

123 + & T (DA @) - vm.a?~;;\ ‘

+ a0 E [(1)A2; az) A

where the quant-ltles (DAL, 2; a, ;wo,g), (DA ), (DA(2; a5)
are computed by formula 5.5 fxtml the Ith set of blocks. Thus
the Teast square estimates 9a @;:,4 fa,. , .., become

’v

va.a, § Z (DAL, 2; a, , 6s),

(12.4) N/
\(2)A(1 ), 0 = (DAR; a).
Hence \,
N
\Q = Z ; ; [(DAQ, 250, , a)
(125)
’\ﬁ\' \ ~ YDA, 254y, a) + (DAQ, 250, 6))

“and if we test the hypothesis V... = 0, @, = I, +++ , ¢ ,
=1 -, ¢,

(126) Q — Q.= >, Eva mt e R e 3.

fy T3

The idea of a lattice may be gencralized, Suppose we wish
to test ¢ --- g, varieties. We may then consider the varietal
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effects as freatment combinations in & factorial experiment,
Thug we denote the varietal effects by V... 1 < < g
and write

= wzﬂ 1;r ‘y(ilx R 3, 0, a'l-n)?
(12.7)
Ev(ily"';"-’:k;al,“',ak)=0- N .
& 28N
'\
We then form r sets of bloeks. The blocks of the ﬁr‘st set
are formed by keeping the indices a, , - - -, @, fixed and. allowmg
& to vary from 1 to g, . Thug ¢, --- ¢, blocks afe ‘Gbtained.
The blocks in the {th sei -are formed similariyvhy keeping
B1y ©v 0y Giyy Gier, cc, & fixed and gllowing a; to vary
from 1 4o g, . In the ¢th set all interactions tffhich do not contain
the ith factor are confounded giving, gl vt fisi@ear G
interaction eomponents confounded. The remaining inter-
action components are by Theoreni 11.2 orthogonal to the
blocks. Thus to obtain @, w wes have to minimize the sum of
the unconfounded parts of the' right side of 5.9 over all the
r sets of blocks, That is tolshy we have to minimize

¢ \
.4 '\‘.
0= D\ 2w v
g, vy 1 o =1
< .
128 \’\“ JEYAEL, v e Gy Gal)
\§ . ' ,
"}; _'1’(31;'""ia;ahr”"a"'«)]’
~\ 3

\W}mre (DAG, , +++ , % ; @, , "-* , @:.) is obtained by 5.5
from the Ith set of blocks. Thus

Bis, v T3 iyt i)

{12.9)

Ql\v—*

= LS @At i e, e,
I .
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Hence
Qu = Z Z L E Z
e=11,--+r i, * Fiw @i, 0T
(12.10) [ SAEAG, - i 0, )
B A
—albli, e 0, ) i) }2}\"\

‘A
&

1f the hypothesis V,,..,, = 0, 1.< a; < q,' "ié"}t(:sted we
obtain

/

Q - Q= ZHZ: 5?; Xa

(12.11) 3
!_f(?'l 'S ~~'" ’ 3o: yRig oy ot a‘t’u)]2'

The degrees of freedom for Q ‘are

> Z @w IJ(qu D (e, — 1)

w=} 1,

because each of ti\é\(q,, -1 - (gin — 1) lndependent com-

ponents of the 1;nteract10n betweon the factors 4, , --- | 1,

contributes\ (@~ 1) squares of independent linear functions to

Q.. The gl‘ees of freedom for @, — Q, are (g, --- ¢,) — 1.
oeed to computbe the variances of the varictal effects

a:nd tferences between them. In doing this we may, without

Ioss,of generality, assume that V. =0,1<a <gqg.

" \ ,Applymg Cochran’s Theorem 2. 1 to 5.7 we see that

o Z UG, e, a0
has the x* distribution with (g, — - {g:, — 1) degrees
of freedom. The quantities (7, , - - - , f.»,,, HO SRR P B

@, < ¢, are composed from independent observations in



161

em(‘tlv the same fashion and hence must have the same variance
Fitsn, i) Hence

g,
qg_l . ;" Gee 7 G, G'fi(i,,-..‘,:u)
= (gq:, — .- (g:n — 1)02.'
Thus O\
(12.12) Ui{s,.---,;“ - (o, — 1) --- (i — 1) o \\\
QI e q:' \ ;

Let V,...... be the least square estimate of V,_...,, "théns
N &0
(1213) Va:, E E ’U(i] y Tty ‘a'ar ) alx_\! Ty a’t’n)‘

a=1 I,

But b) 129 the 8(¢,, -+ , 4. 500, -+, agphare sums of com-
ponents of the interaction between thefactors 4, , --+ |, 1,
and hence by Theorem 11.1 orthogohdlto each other, more-
over by 12.9 and 1212 9(%, , --- ,,ac. Ya,, -+, @) has the

Vananf*e N
1 (g, — 1) al ’(&u -1 o
) o ,Q'l ‘g,
Thusg {m’\\
I\
(12,19 . "~
’ O - 2 (Q;, ) e (q‘-ﬂ - 1)
:‘\ J [ QZ;CE 12 q:, . q:-

Too Etlf}, ‘the variance of the difference hetween two factors
we firg mpute the covariance between A, o, e
@;, n"’?' am) andA(T- y 7 @s;?rnl; SR ' PRI P
b&vw - b,a) where a;, # b;, . We first compute the co-

Sefficient of xc or i A(G o, G5 @yt , B,). Suppose
that Ci, = Gy, , == 4 Ci; = Gy, Cijpy 7 Fijaa s b 7= a’lu .
Then z,....,, oecurs in 5.5 only in terms for which &, - ks
are chosen from ¢, , -+ , ¢; . The coefficient of z......, In
x(kl sttt k,s 3 Che " ,ckﬁ) iS(Q'h, ,Q'kﬂ)/@u ;gr)'
Hence the coefficient of ..o, i0 Aty , == 4 %a 3 @iy *** ,
a;.) bevomes
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i: (— 1)o§—§ Z Gr, """ Qi
=0 f1,°

freeedy Gt g

_1 -4 i e
(12.15) = ) 2 W, g

q1 (Ir Bl dq, v, dy

_ i il
o (g, = 1) -+ (g, ) A
From 5.4 we then have K ¢ “\f
. ‘:\ o
(1216) 2o, = 3 Z Al kel T g
f=n 1, \ 5

We multiply 12.16 by A(,, -+, . ; ., N s\ a‘u) and take
expectations on hoth sides. The left side than 'becornes

\,
(_1)& f . .
Q1 e Q‘r (q‘ {Q“l 1)

On the right side we obtain the Gctvarlance alAfd, , < | 1a
Qi "-,G‘G)A(‘El, :?fa!cf'\; c oy e)] DfA(?’l: cr G
@y, v, ;) and A7 W de s iy o, €,) since inter-
actions between different: £actors are by Theorem 11.1 orthog-
onal and therefore 1“13\dve\pendent Thus

s }
J[A(ili'“ ?"83\\‘! --,aa,a,,,---,a“af,h,--—,a;n)
'A(?'l,' t{“:ar%-la sgu iy y v bn+1; ;biu)]
(12 17) .‘\/
\_" 'Ei (g:, — - {g;, — D’ for b, # a., .

We therefore have

..\
<\)~'a'[A(?’]".. ’1‘1;0""1’ .”Ja‘im) — A(q:l'.l e :isj'a:a+l}
4

. ,.%’,1 P Qi o, G, b‘h+1} ) ba‘n)]
(12.18)

= m[(qnl —1) g, — 1) + (=17

g — 1 o (g, = 1)
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Thiug

U'g(Vm.. e VG]. AR 9% T "'.br)

2¢° -

=—=—3 > (@ -1 (g, -1

1 Fr a=0 1,

(12.19)

r—a

A=0 asl,=+*,r

« \
In the case of a two dimensional lattice 12.19 reduces'to

‘%

L Sl (e ol REIPS ' NP
G142 N\
0‘2;,'”_1,“ = '::\\\.a
Y R I I}
7142 :w,’
In 5 three dimensional lattice *.::f:;&
2 ’:.;\
FViie—Vima — N
Q
¢ a 2?!9’2@3 + ;mb? + Falfa + 01z +2(g1 + s -+ QB_)
g £ N ,
\\ 31 9:0s
:\\ %¢£]j#m:k#n,
: ‘t\"} W |
2:%‘{72(13 + [ + T3 + G203 "I" 2(@2 -'I— q._‘) ’
N 50:\;{. 3¢:14:43 )
S i= 1 mkEn,
’\j:\' ‘ o2 2¢:¢29s T N1 + gags -+ 262 ’
/ : 39’1@’2'13
3=Is.?=m,k?£ﬂ

The ealculation of the efficiency factors with respect to the
variotal estimates and differences between them is left to the
reader.

If the number of varieties is the square of a power of a

> &—J’F‘—E lge. = 1+ (g — D + (—1):fff\]~i}

N
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prime, then the experiment may be laid out to adventage in
a g0 called lattice square, which like a Latin square permits us
to break the soil fertility into two rectangular components.
In a lattice square m® varieties are replicated in r square arrays
each with m” plots in such a way that every pair of varieties
occurs together in the same row or the same column the same
number A of times. To construct a lattice square one needs,
{m — 1) orthogonal squares. The individual boxes of thesé
squares may be denoted by v, , --+ , v, . Together Wibhﬂhe
row and column number of the Latin square ea(:.h'bl}% corre-

sponds to (m 4 1) numbers ¢, , «++ , G, 0 <@ m — 1
and the m® vectors v, = (G, -+« , i3}, @@, .-, m
have the property that for every 0 < p, » & — | and each
pair #, s there is exactly one vector v, fO0r" which 1"’ = p,
3‘:0] = 7, AN

We now form the first square by ordering the varieties into
a square according to the first pairy0f coordinates. That is to
say if v, = (61, 4%, ---) thenl; is placed into the 43t row
and the i,nd column, The geyddr.id square is similarly arranged
secording to i, , ¢, and spferth. If m is odd we obtain in this
manner (m + 1)/2 replieations. Since the rows and the columns
of the squares are jsh:& lines of a finite Iluclidean plane whose
points are the Va{i@ties, it follows that every pair of vurieties
occurs just onde together either in a row or in a column. If
m I8 even weéarrange according to the indices (7, , 7.}, (s , 1a),
s (inf{a"r’:m): (Fmsr s %00)y =, (Bm , %mss). Thus every line of
the ¢orresponding Euclidean Geometry occurs twice, once as a
rowzand once as a column, and thercfore every pair of varisties
wﬂi appear together twice, once in the same row and onee in

(the same column, We shall exemplify the procedure by con-

o

structing a lattice square for 9 and for 4 varieties. We start

from 2 orihogonal 3 sided Latin squarcs
L. 2.2 3,3
2,3 3.1 1.2

3.2 L3 2.1
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The two squares of the lattice square then are

1 Uz 4] o L] U5
.fl_-.'i = U [ g Lg = Vs iy Wy
iy Vg gy s s 3 .
Similarly from
¥ 4 ~\ ¢
1 v 2 Y A
1 2 NN
N/
2 Y 1 Vs . |\
3 4 . ( Q,S
We cbtain 3 squares of a lattice square with 4 V&I{é@ies
A
2N Uz [ Ny \ 4 251 oy
I"‘I = L2 = ‘o\\,; Lg -
bs L vz Uy \: Uy vy

The assumptions underlying t-he‘lsit:tiée gquare are

’Qt
( te} L ST} te)
T e e A T T

{12.20) _ N
T = DS T = a0,
: TN\ 2 g
o)
where \'\{”'

yi  is the obsefved yield in the ¢th row and jth column of the
ath repligation.
™ is thelefect of the 7th row in the ath replication.
e isfhp effect of the jth column in the ath replication.
Upey, ;ig\\the effect of the variety in the ith row and jth column
“3%f the ath replication.
”"nj(i' is the effeet of the ath replcation.
s ig the general mean.
The ¢ are normally and independently dist-ﬂbuted‘randor.;n
variahles with mean 0 and the same but unknown varance o
The equations resulting from minimizing

Q=2 2 @ - —a¥ mte, T8 T 0’
=3 i ¥
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become, if the Lagrange operator is ignored,

P ZZZ@“”Z%

;(a) — E Z P~y =y oy

(12.21) Z y{a} — z aled + Zcirx) + r’ﬁk + ?,;, t*\.
:..i\\“"’
myl? =m0+ D8 +-m#“’4—ﬂ@h
rgb@]
myl? = ma” 3 0 4 malty +\m,
ajiud

. A\
where 2., denotes summation over ajl blots contfaining the
kth variety, 2., e (3., =) denoted sal}nmatlon over all plots
contained in the 7th row, (or column), of the ath replication.
Summing the fourth and ﬁflgh,‘Equa,tlons over all rows and
columns respectively which séﬂta.in the kth varicty we obtain

m[z i — {) 3 Z W -y

(12.22) O
\\— m me + m E M+ (2 — Wy .

Dividing 122\2)by m and subtracting from 1221 yields on
account fo?‘ (m 4 1)/2 X

(m%er- UZ@W ¥~y + .
<\Jlence
_ 1
A(.ﬂJ - fa) +
T‘ y‘ K rila} f}, !
(12.24)
1 .
Alay _ led (e A .
¢ = Y Y birs ,,,-{Zu) 9‘
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s 2] ag fal
If #' &% are the least squaa'e estimates of i, &®

under the hypothesis v; = 0,7 = (1, -+ , m® then
?:_u?(a) — ygix) _ yfn),
(12.25)
C:'-,(rx} — y(a) _ y{a}
Tt is easily verified that these sohztions satisfy the restrictions . £\
in 12.20. Hence by Theorem 4.2 N

- S XSy o
—n ZIZE+HZEnT 0

. \‘
o 1 oI
_ZLZ ﬂk“i{_a Eﬂa—*th]
o 3 ] c)\\ m =

e
W

a3

(12.26)

.../"

+ m2 E (y(“))z; "':

&1
@=TILE@EN -2 %
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We shall now eompute the varianee of §, . We shall simply
eompute the coeﬁﬁments of the observations entering into 8, .
There are r bservatlons on the kth variety which enter info
f, with the-doefficient [2(m — 1)}/(Am?). Further 2r(m — 1)
Vaa*mhe&@ﬁ‘erent from v, each of which oceurs either in & row
or in @\bolumn together with v, which enter into , with the
CU&fﬁ&lent — 2/(am® and r(m — 1)* observations not together
With the kth variety in & row or column and therefore entering
with the coefficient 2/[Am*(m — 1)]. Thus
o5, 4?’(m — 1) n 2r(m — 1}-4 + A

T i
a Mm' »m' Nm

_ 4w’ 4 2mt 1)
T Nmt T N T am
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Since every pair of varieties occurs exactly A times @, — Q,

must be symmetric in the f, . Therefore applying Theorem 4.5,
12.26 simplifies to

Q. = Zﬂ) E Z @ —m Z [Z (yiy?

(12.27) + E' (y(:ﬂ)f} — =N g # -+ m’ g (y‘“)}g\
] . o\:\
Qr_Qa=('r_)\) Zkvk' AN

The degrees of freedom of Q. are m°r — ‘.{;né'"— -

Um—1) — (r—1)— landof @, — Q, , ad > 1.
The variance of 6, — 9; ean also be\dhtained by simple

enumeration of the observations enter:ng‘ into #; - #; and
turns out to be L& '
%
2 pAN
J(é;;ﬁ,‘) e N 2
[ art— A

The details of this enumeration are left to the reader.

The efficiency factors With respect to §; and with respect to
9, — 9; both turn out(tebe (m — 1)/(m + 1).

Several more corq'plicated designs are in usge which all evaluate
the idea of trgza\,ﬁng the varietal effects as treatment com-
binations of séweral factors. It is for instance always possible
to superimpOse a Latin square on a square lattice and then
to introdice a third set of blocks by grouping the varieties
accokﬁng to the letters of a Latin square. Such arrangements
a;‘ej’(ﬁ]]ed triple lattices. SBimilarly with a set of r orthogonal

:'s{qﬁh.res it is possible to obtain an (» 4 2} fold lattice. If

'+ = {p — 1} where p is the length of the sidé then the resulting

design is termed a balanced lattice. The designs discussed in
this chapter were invented by ¥. Yates and proposed by him
in several important publications. {Journal of Agr. Science 26,
pp. 424-455, Ann. Eugenics, pp. 319-332, Journal of Agri-
cultural Seience 30, pp. 672-728.)



CHAPTER XIII
Andlysis of Covariance

WE sHALL consIDER in this chapter the following linear
- hypothesis. Suppose we have N observations Vi ¥, 0, un N

and constants €., -+, Tpala = 1, -+ - » N). We assume A o
oA\
E(’y’“) = Ha + 181x1u + e + ﬁpr'pﬂ ® = 1’ e ,{V} )
(13.1) ' A O
. A O
2Nty =0 =1, --- ,s<N rank (A;,) &% > p.
2] P\

The hypotheses to be tested may coneern gither the Bea OF
the 8; . Accordingly we shall consider two kjpdgso‘f hypotheses

H 27\-'7#7 =0, f=8‘_‘li}’\:” , TSN,

(13.2) rank (\;,) = 1-;
Hy: 3uuf = 0,;:.;{1:; 1P

Both hypotheses are linear hypotheses and Theorem 4.1
applies. The degrees 0§%edom for ¢, are obtained as follows:
The expectations By, « =1, -+, N, are first expressed by
the ¥ + p paramagters u, , @ = 1, <+, N; 8,1 =1, -, P,
The linear rest¥iétions in 13.1 enable us o eliminate s of t}:te
2o . If we a»{’;}ﬁ]ge it so that 4 , -+ , . are eliminated this

will I .
eafléq ) |
(13:.351:{.'15'(%) = Z @ity + Bira + v F Botoa -

F=a+l

Garyr "77 &1 Tt T,

Qasniy "7 Ay Traw ** " Tpn/ -
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has the rank N 4+ p — s then we have expressed the N ex-
pectations E(y,) by N + p — s parameters and this is equiva-
lent to s — p linear restrictions on E{y.). Thus @, will have
¢ — p degrees of freedom if the matrix 13.4 has the rank N +-
7 — 3. The degrees of freedom for @, — @, are obtained by a
straight forward application of Theorem 4.1.

The analysis of covariance is frequently applied to r way,

classification designs. Thus we might have taken observaiﬁibné
on the weight gains of animals from r different raqe&&t k
different diets and might have recorded the initial{Wweight of
each animal. Assuming that the interaction ig‘@rand that
* weight gains of anmmals depend linearly on théf;}litial weight
we can write our assumptions as O
PN
Ey) = w4 gy + 5 -+ By 2 =‘.1,:\"“ =1k
where y,; is the weight gain of thp:a,ilimal from the 7th race
receiving the jth diet and =, iz tJ;:é:injtial weight of this animal.
The hypotheses to be tested'n;é,'y‘ be

H: po=0i=1 -5

The tests for these hypotheses are obtained by a straight
forward applicetion of Theorem 4.1.

:t\w
:“\s¢

L N \“.:

*
S

N



CHAPTER XIV

Interblock Estimates and Interblock Varianée

THE BLOCK WHICH WILL CONTAIN a certain set of treatment
combinations or varieties is actually always chosen at randoms N
%0 that the block effect may also he regarded as a rando
variable. This point of view makes it possible to obtain un=
biased and consistent estimates also of confounded interactions
in a factorial experiment. Thug from formula 11,.,}3”%& see
that if L, presents the linear form D 4 £,z corresponding to
the linear form S, = 3, t,575 in. the treatmetit eombinations
T; then O

e,
(14.1) Lo= 8,4+ X tugbs Jq.~\;’taﬂe,s s
] TANE

where the ¢; are normally and independently distributed with
mean 0 and variance ¢”. If the-block effects are considered as
rormally distributed random variables independent of each
other and of the random error €, with variance o> and mean
Y, then L, is an unbi{m@d estimate of S, if S, is not th.le mean
and thus camparisc{ig ‘between confounded linear functions are
still possible. The.variance of a confounded form L, bticomes
by 11.14 uza’zz,leif d P ety Nowud, chi=12 stas=1
because of thelorthogonelity of the substitution. Hence
(14.2’)\'&.\“ 0. = ud + o
IffL,, is another confounded linear form then eop.z, =
"“??{ " 205 Caits; + 0° Dy laylyy = 0 because Dl_t the orthog-
Nonality of the matrix (tap) and the assumption of.mdependence
of the block effects. Similarly ¢z,z, = 0 if L.,. is cor:founded
and L, unconfounded. Thus comparisons involving con-

founded linear functions become possible. The e;.;timateﬂ 05
L, obtained in this way are called interblock estimates an

the compsrisons between interblock eit.imaf;es are teﬂt?;datl:li
terblock comparisons. The variance us’™ 4 ¢* can be es

17
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if several complete replications are available. The confounded
forms are then ijreated as a separate set of observations all
with the same variance and with means S, . As long as no
partial confounding takes place confounded linear forms may
be compared with each other applying the F test, with @,
being obtained from the sum of the squares of deviations of
these forms from their mean values. The degrees of freedom™
of @, are (r — 1)f where r is the number of replications an\d I
the number of linear forms confounded. For comparisens” of
confounded with unconfounded forms no exact test ig available
ai present. : Y

If the linear form S, in the treatment &mematlons is
eonfounded in some replications and orthogonal to the blocks
in other replications, we shall obtain two m\dependent estirnutes
of 8. : intrablock estimates from thSe replications where
8. is orthogonal to the blocks andNinterblock estimates from
replications in which 8, is confowdded with sall the blocka.
If we would know the interbl@f:k" and the intrablock variance
then these {wo estimates cauld be eombined so as to yield
minimum variance. Let Egand L) be the intrablock and the
interblock estimate redpectively of S, and let o5 and o7 be
the variances of I,{End LY, respectively. L, and L. are in-
dependent heing\&ﬁved from different observations and both
are also mdependent of @, as may be seen from Theorem 11.3.
An easy calculation shows that

:..\;,\“ 74— e 2L, + c‘ L
o%“ “ PR

ha.s the smallest variance among all linear combinations of
'V the form (al.n + BLL)/{a + b). Moreover L* is normaslly

" distributed with variance (¢7°0%) /(0% + o%) so that

f ol + O‘a L

(14.3) F = 1 3% Qe

has the F distribution with 1 and f degrees of frecdom where

f is the number of degrees of freedom for @, as given by Theorem

11.3 and o% iz some known multiple of o*. However ¢° and
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o are not accurately known. As an estimate of o we may
use Q./f and an estimate of s 4+ ¢° may be obtained from
those linear forms which are eonfounded in more than one
replication and also by comparing the observations on the
same linear form in replications where it is confounded with
those in replications where it is unconfounded. However, if we
replace o and o'* by these estimates then F as given hy 14.3¢
does not have the F distribution. If the estimates ¢ and g
are both based on a large number of degrees of freedom theti
- F in 14.3 will at least be approximately distributed as R since
o’ and ¢* converge stochastically to their true valttes,’ Thus
although we might gain somewhat in efficiency, By " utilizing
the interblock estimates we do so at the expenge of mathe-
matical rigor. It may also be remembered that's decrease in
variance is not necessarily equivalent to anincrease in power,
Formula 14.2 shows moreover that the Sifiance of the inter-
block estimates is large compared to bhe’ variance of the intra-
block estimates, whenever there 8 any appreciable variation
from block to block. Thus a sizeable advantage is derived from
the use of the interbiock estirci@;teé only if the blocks are nearly
uniform in fertility. S
In quasifaetorial desighis the procedure deseribed in the pre-
ceding paragraph a {I‘i‘eé without change. In other designs for
varietal trials, far mstance incomplete balanced blocks, the
application is nopammediate. We note however that the sums
of the yields of Whole blocks involve differences in the varietal
content of the” blocks. Thus estimates of the varietal effects
may be\bbtained by considering the regression of the block
totals ‘ol the varietal effects. The estimates of the varietal
ef.feg}oé;‘ obtained in this manner will be linear functions of the
(block totals. We shall show that the block totals are inde-
pendent of the intrablock estimates and independent of Q, .
We refer to the assumptions 7.8 of a general arrangement of -
varieties in blocks where however no variety occurs more than
onee in any block. The estimate 8; is consistent by 4.49. Hence
if . = 3 ., where z, , -+- , zy are the observations then

E@) = v + 2, Aobi, + w2, A, , where 7, lies in the ith
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block. Since #; is an unbiased estimate of »; we must have
D acti Aa = 2 zucs; Aq for all 7 and § and Z., A, = 0. Hence

cact; Ay = 0 which means that #. iz orthogonal to, snd
therefore independent of the block sums.

If in the set up 7.8 we test the hypothesis v; = 0 then the
estimates of the block effects will be given by the block averages.
Applying Theorem 4.2 snd 4.1 we then see that the bloek™\
sums are also independent of @, obtained by minimizing 7. 9
Sinee the interblock estimates are linear functions of the block
sums it follows that they are independent of the mtra?bmck
estimates and of @, computed from the intrablock “estimates,
Interblock and intrablock. estimates may be cetabined as in
factorial experiments so as to give minimum-¥&riance. For this
process 1t is necessary to estimate the interblock variance. To
obtain such an estimate it will be co,m?%:ilent to write the
assumptions 7.8 in the form

(14.4) Ely:) = v; + b,-,z "Z v, = 0.

We shall also assume t¥at no vanety occurs twice in the same
block.

If we test the hyputl{ems by = u; 5 =1, , b then the re~
gression value of 1« ‘becomes V./r; and hence by Theorem 4.2

- V2
(14.5) @ —.\Qp~= v = Xls — 0 — b)) —
Since.“{éfff is the proper statistic for testing the hypothesis
= wMt must have (b — 1) degrees of freedom where b is
the \number of blocks. Moreover 1t can not depend on the v, .
Fhus

\\’. Q. — Q. = Zzaiibibf+ Z‘,a‘-b,-—FW.

Where W is independent of the b; and v, . The a,; are, more-
over, constants and the a, independent of b; .

If the b, are all equal to x then 2, >, a::0:b; + 24 by =
gt > 2 @y + g Qs a; must be independent of ¢ and there-
fore D s 2o; @ss = po; 0, = O and B(W) = (b — 1)¢°. Then
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if the b, are considered as random variables with the expectation

E(E 2 aubd; + X ab)
= g7 ZG”“E—.]_; ZE%‘F#Z&,
=t D
.\\

Thus the expectation of @, — Q. when the b; are considered
a8 1ndependult random variables must be of the form uuﬁ +
b —~ I)a To find a we have to find the sum of the aoeﬂ"rclents
of the b} appearing in 14.5. ..‘\ :
The middle term in 14.5 ig an estimate of\, multiple of &
and therefore independent of 5, . In the first term b] occurs
with the coefficient %, , in the last tenQ Gvith the coefficient
Em 1/r; where Z(” f(7) denotes the summation of f£) over
all 7 such that the ith variety occurs in the jth block. Hence

@ - Q) = (Nv-Zf) 2 ,,—l)a + (b - 1

AWV — 5o + (b — Do,

N\
where & is the nu}aber of experiments and v the number of
Varieties, Smce\Q ‘has N —» — b + 1 degrees of freedom

(14.6)

'\ b — 1 No—o
Q“Q"ZV'WQ«=Qf—-Mﬂ9_b+lQ

N\
ma,y be used as an estimate of (¥ — v)a’.

e shall apply these results to incomplete balanced block
demgns The interblock variance o3 of the block totals becomes

2
Y =Kot 4 ke,
To estimate o2 we use

- X . _
M = Zy?f—' Z(yu—ﬁ.——bs+u)2'-;EV?=_
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where 4, , 5,— , i are given by 7.19. From 14.6 we have

(14.7) B(M) = ofr — 1)o” + (b — 1)o".
Thus putting ‘
Qa _— 2
h—v~b+1- " N
M — (v — @32) .2, 2 0% O\
(14.8) E’( e = k" + o' =F. LM

Thus & kM — (v — E)s")/[v(r — 1)] may lga‘tfsed 58 &n
estimate of o3 . The intrablock estimate of)v, is 8, =
(V. — T.)/(). The interblock estimate i'sf?bund by mini-
mizing

. w\J/
(14.9) Q=3B - T"a by
under the restriction E,v P, = ’Q.:D’ifférentiation with respect
to #; and p yields X &N
b b~ ST o, =1,
(14.10 <
) ."*\f\_ Z Yor _ . .
'.\Cs,g - bk y = H.

where 7 is thé Jagrange operator and #! , # the interblock
estimates of9¢/, u. Adding the first of the equations 14.10 over
the varj\et?'re&' yields r = 0 and hence
\g T; — kra
| QR-E NLLLL
(1440 o = -
.»\‘1
"\ We shall usually want maximum precision with respect to
" the estimates of varietal differences. Now

s _ 2k
Toi—t; — W &y
(14.12)
a _ 205 (T‘ - }\) _ 2 -

Cyrimp’y — (?. . R)E (‘f‘ _ X) Gg .
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Thus maximum precision for the varietal differences is
obtained if we use as their estimates the differences of the

quantities
o5 = aié(?‘ — NP + (ke”)/ (Mo}
' o5/ — A + (ke®)/ (M)
(14.13}
o Mozl + k@ — Mo
Avos + k(e — Ne® N
(NN
The variance of the difference s — ¥ is given by O
0'2t . = 2k0-20§ ""( y :“.
TGk — N + M (U
Thus N4
P bk —v — b+ 16%r — X)..*I%\\hz;ai (¥ —~ o¥)

1 2k Q

has the F' distribution with 1 antl b — » — b -+ 1 degrees of
freedom respectively. Actually“however ¢* and o3 are not
accurately known and must.be replaced by @./(bk —v — b 4- 1)
and -

ﬁ§~(v~—k)82_ 2
e

This will,not; Tead to a very serious inaccuracy if the number
of blocks.js sufficiently large. However an advantage is only
gained /i Cthe soil fertility differences hetween the blocks is
actually very small. Sometimes it may happen that the estimate
for'gs hecomes smaller than $* In this case it is recommended

(P replace it by S* in formula 14.13 since o% > ¢ under all
\J circumstances and since S° is a better estimate of ¢* than S;
even if there are no block differences. '

The procedure for utilizing interblock estimates in the
analysis of incomplete balanced block designs which we derived
above is arranged for easy calculation in the 1943 edition of
the statistical Tables of Fisher and Yates.
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TAELES OF THE 5% AND 197 POINTS FOR THE nrs"rliftBUTmN OF F
From Sncdecor, George W., Statistical AQzlwds Applied to
Ezperiments in Agriculture and Biology. The'Towa State College
Press, Ames, Towa. 4th. Ed., 1046,

.
AN
»

Permission to include these talqlgfgghas been obtained.

L N

TABLE 0F Ej o ANB\\'&['E CORRESPONDING VALUES OF Py and
TABLE OF Fy ,; AND THE CORRESPONDING VALUES OF Py, From
Tang, P. C., {The Power Function of the Analysis of Var}a{lce
Tests withﬁ]iables and Ilustrations of Their _Use.’_’ Stmfzstzcal
\ Researe (Memoirs, Department of Statistics, University of
Lond% ol. IT, pp. 126-57. : : -

rfgeﬁfﬁs‘sion to include these tables has been obtained.
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TABLE 10.7—5% (Roma~ TYPE) AND 1% (Boup

1 degrees of freedom for numorator

iz

1 2 3 4 5 6 7 3 9 10 1 1z
1 [ 161 200 216 235 230 234 237 239 241 242 243 242
4,052 4,999 5408 5625 5,764 5,859 5,928 5,981 5,022 6,056 6,082 6,106
2 1851 1000 19,16 19.25 1930 10.33 10.36 19,37 19.3%8 19.30 19.40 1041
98.49 99.00 98.17 09,25 99.30 99.33 99,34 99.36 80,85 9940 99.41 9942

3 1013 955 028 912 001 894 588 884 88 873 /.76 BTN
34,12 30.82 2945 28.71 28.24 2791 27.67 27,49 27.34 27.23% 27.13 27.45
4 | 771 604 659 639 6.26 616 600 604 600 596 593 /%591
21,20 1804 1669 1598 1552 571 }4.98 14,80 14.66 14.54 14.45 1457
5 {861 579 L4l 519 505 495 488 482 473 474 A70 468
16.26 13.27 12.06 11.39 10,97 10.67 10,45 10.27 10.15 10,0% L1 496 9849
6 | 599 514 476 453 430 428 421 415 410 406 403 400
13.74 1092 878 915 B75 847 826 510 7.95, YBT 1T 1Tz
7 [559 474 435 412 397 387 370 373 .84BN383 860 857
1235 955 845 785 746 T.19 T.00 6.844 6% 6582 654 6.47
8 | 532 446 407 284 360 258 350 344 V230 334 331 378
IL26 B6BF 7.59 7.01 663 637 619 Q:Q 7591 5.82 5.74 5467
9 | 512 426 386 363 348 237 3200893 318 313 310 .07
10.66 B8.02 699 642 606 5580 682 1547 535 526 518 5311
10 [ 496 410 371 348 333 322 SJL 307 202 297 284 24t
10.04 756 855 599 564 5.8;-1'3 521 506 495 485 478 4.71
1! [ 484 398 350 B2.38 3.20 .3§;i9~ 301 205 290 286 2,82 2.79
8.65 720 622 56T 532507 488 474 463 454 4.46 4.40
12 | 475 3.88 349 3.26 1Y 300 202 285 280 276 277 2.66
.33 693 595 541, 506 482 465 4.50 439 430 422 428
13 467 380 341 3(8N3.02 292 28s 277 292 267 263 260
407 670 5.74 , iﬁ' 4,86 4.62 444 430 419 410 4,02 3596
14 {460 374 23 NBIL 296 2.85 277 270 2.65 260 258 .53
8.86 8651 5.08 % 503 463 446 428 4,14 407 3,94 388 380
15 | £54 3.689840 306 200 270 290 2684 250 255 251 248
868 636 J5.42 4.89 456 432 414 400 389 3.80 273 3.67
16 4.49 '\giﬂé 424 301 285 9274 266 250 254 249 245 2,42
BAE (23 529 477 444 £20 408 389 378 3.69 26l 3.55
17 a6 350 320 206 281 270 262 2.55 250 245 24l 2.3%
K { \8 0 611 518 467 434 4,00 393 379 368 359 352 3.45
183441 355 316 203 277 286 258 241 246 241 237 234
N\ 828 6.01 509 458 425 4.01 385 ATl 360 S51 344 337
19 | 438 352 3.3 290 274 263 255 248 243 238 234 231
8.18 593 5.01 450 4,37 394 377  2.63 3.62 343 336 330
20 | 435 349 310 287 271 260 252 345 240 2.35 291 298
210 5385 494 443 410 3.87 371 3.56 345 3.37 330 3.23
21 ) 432 347 307 284 268 257 240 242 237 232 298 2.5
802 578 487 437 4.04 381 365 351 3.40 331 a.24 317
22 430 344 305 282 268 2.855 247 240 235 230 2325 2923
794 572 4.82 431 3.99 276 2569 3.45 385 226 3218 312

The function, # = ¢ with exponent 2z, is computed in part from Fisher's table
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15

m1 degrees of freedom for numaratar
— -

i4 20 24 30
245 248 248 245 250
6,142 6,169 6208 6,234 6,258
1042 1943 1044 1045 1548
99.43 05,44 9945 99.46 99.47
8.71 %69 866 B84 84z
26.92 26,82 26,69 26.60 2650
5.87 58 ES0 577 574
14,24 14.15 14.02 13.93 13.83
464 460 456 453 450
977 568 855 947 9,38
898 392 387 384 3.8
760 752 T.a9 7.31 723
2.52 340 344 341 3.3
635 6.27 6.15 6.07 598
3.23 320 3.a5 3.12 308
556 5.48 536 5.28 5.20
3.02 295 283 290 286
500 492 480 4.73 4.64
286 282 277 294 270
460 452 441 £33 425
274 270 265 241 257
4.29 421 410 £02 334
284 260 9254 250 246
405 3,38 3.86 3T LTI
255 251 248 242 dug
385 378 267 350 (31
248 244 239 2§~>§\ 2.31
70 382 351 Nai3 534
243 230 239 “goo o295
3.56 348 3,36 320 320
287 2339098 224 290
145 ;:.a‘f‘izs 318 310
233,026 223 219 215
.38 §§.27 316 208 3.00
22 225 210 215 201
N7 a1 37 a0e 290
226 221 215 211 207
219 31z 300 292 254
223 218 212 208 204
313 105 294 286 277
220 215 209 205 200
3.07 299 2.88 B0 2,72
218 213 207 203 1.9%
302 294 2.83 275 267

40 50

251 252
6,286 6,302

1847 1047
99,48 9948

380 858
26,41 26.35

8.7 570
13.74 1369

4.46 d.44
9.29 824

b ol
H‘i% -
bl ]
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=

Ha‘l
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=
o
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%

P
4
&
&
-

g
g
_Nllll

221 218
iz 307

2156 2,13
a0 296

211 2.08
292 2586

207 204
283 278

2.02 200
2.7 270

199 166
263 2,63

196 1.83
263 2.58

193 181
258 253

OO0 200 00 2=

253

6,323

19.48
99.49

8.57
26,27

5.68
13.61

1.89
.51

1.87
2,46

253
6,334

10.49
99,49

8,56
26.23

5.56
13.57

»
3

Bapa
oo
@

poto
28 3R

Lad il il
[- }s]
-39

b !""E
2
58 28

L
o 35
[T

25¢ 254 a54
6,352 6,361 6,366

1949 19.50 19.50
9049 98,50 9950

83.54 - BR4 853
26.18 26,14 26.12

585 564 563
13.52 13.48 18.4‘{

43R 437 496
907 94 \vioz

389 @G .67
6.947 690 658
328} ‘234 393
570 567 5.65
2296 281 293
431 4388 4.86
273 273 271
436 4.33 4.51
256 255 2,54
35 393 3191
242 241 2.40
366 362 3.60
232 231 230
341 338 336
224 223 221
321 318 316
218 214 213
306 302 3.00
210 208 2.07
292 289 287
2.04 202 201
280 277 2.7
190 187 196
270 267 265
195 193 193
262 358 257
191 190 1.88
254 251 Z49
187 185 184
24T 244 242
184 1.82 1.81
242 238 236
‘181 186 LTS
237 233 231

10

11

12

13

14

15

16

17

18

19

21

VI(7). Additions] entries are by interpolation, mostly graphical
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TABLE 10.7—5% (Rouax Trer} ano 12 (Bowp

n1 degrees of freedom for numerator
Ha .
1 2 3 4 5 8 7 8 8 16 11 12
23 | 428 342 3203 280 264 2,53 245 238 232 208 224 220
7.88 E.66 4.76 4.26 294 B3.71 B854 241 3,30 321 514 307
24 | 426 340 801 278 2.62 251 243 236 230 226 222 218
7.82 561 472 422 390 367 380 236 3.25 317 3409 2.03
25 | 424 538 299 276 250 249 24l 234 228 224 230 216
777 557 4.68 418 38 363 846 3.32 221 313 305 298
26 | 422 837 208 274 230 247 230 242 227 222 IR 2,150
772 553 484 414 3.82 359 .42 223 317 309 . 202 296,
27 1421 335 206 273 257 246 237 230 2.25 220 218 Loy
7.68 5D 460 411 379 356 339 326 314 206 298 293
28 | 420 33+ 205 271 256 244 236 229 224 219,918 212
7.64 545 457 407 376 353 B8.86 3.23 35.11 3.03)25s 28p
N
20 | 418 283 203 270 254 243 2585 228 2224/8MR 214 210
7.60 542 454 464 373 350 3.33 330 3084800 292 237
30 {417 352 =202 269 253 242 234 227 22B°216 212 209
756 539 451 402 370 347 330 317 /B06 298 290 234
32 | 415 3.20 290 267 251 240 232 225 2.9 2id 210 207
7.50 5.34 446 3.97 366 342 3264813 301 284 238 280
413 3.28 2.8 265 24y 238 =zao\Z2a 217 212 2.08 2.03
7.44 529 442 393 361 338 321, 3.08 297 2389 282 276
411 326 2,86 203 248 238\228 251 215 210 208 2.03
7.3% 525 4.38 3.89 358 335, 5.18 3.04 284 286 298 277
38 | 410 3225 285 262 245235 226 219 214 209 205 202
T35 521 4.34 386 354 .32 215 302 2091 282 295 243
~
40 1405 323 28¢ 261 945 234 235 208 21T 207 204 200
731 518 4.31 33307951 320 312 299 288 280 273 2.66
42 | 407 322 283 ’)sgb 244 232 224 217 211 206 202 199
7.27 515 4.29) 3.50 34% 326 3,10 296 2,86 277 2.70 264
44 1406 321 2ZRIWLES 242 231 2.23 216 200 205 201 198
7.24 512 \&E6 378 3.46 3,24 307 204 284 275 268 262
46 | 405 2.200M281 257 242 230 222 214 200 S04 200 197
7.21 5187424 376 3.4¢ 322 305 292 282 273 .66 26D
48 4,0,3\’3.1'9 280 246 241 230 221 214 208 203 109 106
TAIN'5.08 4,22 374 343 220 304 290 280 271 264 258
50 %03 318 279 256 240 220 220 213 207 202 188 1S
#NW.17 506 . 420 372 34F 318 302 285 278 270 262 256
55| 402 317 278 254 288 227 218 211 205 200 197 143
\ 7.12 501 4.6 3.68 337 315 208 285 275 2.66 2.59 253
60 1400 315 276 252 247 225 217 210 204 . 199 1.95 1e2
708 495 413 365 234 312 295 2BE2 272 263 256 L50
65 | 309 8514 275 251 236 224 215 208 202 1988 194 190
7.04 495 410 362 331 309 293 279 . 270 261 254 247
70 §3.9% 313 274 250 235 223 214 207 201 197 193 10
701 492 408 260 329 307 281 277 267 259 2.5f 245

The funetion, # = e with exponant 23, ia‘computed io part {rom Fisher's Table
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7 degrees of freedom for numerator
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14 g 20 24 30 40 50 75 W 200 500 e
2 s i1 rho ks i B i% 42 m Im 33
213 208 202 198 104 189 L86 182 180 17s 174 1L.73
293 285 275 2,66 258 248z 236 233 227 228 221
B re i RN LY 1M 10 1T i m i
fe i ree sk 3 ORE IR LB 1D i im i
i3 rm ves 3% i A5 OAB L 1n 1 ies 20 |
IR R BT BT
29 Zes 2% e ih AR LT M oAm re e ier
Bhozer R OED I IR ipoLp HAW I Ll
ihorer asoxa 3SR IRARYim 1w e
i ¥ e ra b3 ED LD 11w 1
AN &
e 2 b ba Y MR 218 Zoi oo 1 iae bol
1,67 1.53
5 56 sk 53 M AONEE IS w pmoia o
y L55 L33 1.5%
o zis 33 1S mecent z68 18 8 iR 1 i
2ok AR OMESIEE A IR M I in om
) 152 150 148
s 1 2 gt il N AN OIE I el
SR I AT i::rz
Oy ; G0 147 145
- SRR UL 1538 18 18
%:3?? 35 I Zis 700 Zes Lsi Lse 1az 176 i; ;::
Ot 1 in g i R it 1 i
He ¥ Em M OES IR LB I i I I i
42 13% L
B o3S AT OSSR LM I MR IR HE B i
HOER MR AT IR OMD LB MO8 L8 I3

32

34

‘ag

38

40

42

44

il

48

55

63

70

inte i ¢ hicai,
VI(7). Additional entries are by interpolation, mostly grapi
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TABLE 10.7—5% (Romaw Tyen) awp 1% (Borr

ny degrees of freedom for numerator

ng —

i 2 3 4 ] & 7 8 g 10 11 12
86 386 311 272 248 233 221 22 205 199 195 1517 1.88

696 485 4.04 356 325 304 287 274 2,64 255 D24R 241
100 3.94 309 27D 245 230 219 210 203 1,87 152 183 1.85

6.9 482 398 351 320 299 282 269 259 251 243 236 ~
125 282 307 2683 244 2020 217 208 2401 155 190 1.8 1.83‘

6.84 478 394 34T 317 295 279 265 256 247 2.40 taz.SS;\

28N

160 391 306 267 245 227 216 207 200 194 1.50 1.3F \\1.82

681 475 3,91 244 314 292 276 262 253 244 33TV 2:

W

200 380 3.04 24656 241 226 204 205 198 1.92 1.87‘:"1.33 1.50

676 471 388 341 311 250 273 260 250 2.(1 ’?.34 2.23
400 3.8¢ 3.02 262 239 223 212 203 196 1.90"%‘8’5 18 1,78

6.70 4466 3.83 336 308 285 268 255 %.flﬁ\\ 37 229 223
1000 385 300 281 238 222 210 202 195\hsY 18 180 176

6.66 4.62 380 3,34 304 282 2466 2.53\ 43 234 2,26 220
o [ 384 206 260 237 221 200 201 Y9188 183 179 175

664 460 LT78 3.32 202 280 2.64“ 251 241 232 224 218

- 3 3
The funetion, F = ¢ with exponent 2z, is/ Eon'f;;uted in part from Fisher's Table
0“"‘
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400

1000

187

137

127 1
L.49

L46

100 z00 500
1.36 131

L.54

75

50

40

1 degrees of freedom for numerator
4 3

Faen Trps) PoINTS For TaE Disreisvmion or 7

I\

116
1.24 1

1,
42 L322

1
1

L.32
147
L30
Laa

1.38
1.57

42

1
i

1.49
174

1.54
1.84

=8
=11

-
k]
bl ]

e
—ed

133

3
11
1.60
Lod

»1.08

4 \
13
19
~
Wl.1t
L15

L19
LT
1.25

138 128

fonl.
il

5

N\

L26

L.36
1.54

1.61

147 141
L.71

1.53
1.81

1.58
1,89

65
.01

1
2

70
05

1
2.
VI{7}. Additional entries are by int.erpolétiun. mostly grap
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TABLE 1, Tanik oF E%.a AND THE CORRESPONDING VALTES OF Prr

=1
b Ehy
1 1.5 2 25 3 4 5 [ 7 8
2 J980 ¢ 970 | 047 | 914 | R74 | R28 | 720 | 602 | .48¢ | .ay3z | .o77
4 841 | 040 | R8K | TR4 | B5L | .G01 Y 233 | 077 | (018 .003
[ L0696 | 934 | 830 | 68T | 488 | 312 | 076 | 010 | (ool
7 636 | 028 | (822 | 652 | 447 | 258 | .049 | 006
8 GG | 824 | 808 | 624 | 40D | 221 | 034 | .voo A
[ 40 F 8204 .795 | 601 | 479 | 193 | L0251 g0l
16 501 | 016 | .78 | (G6B2 | 355 | .172 | 019 | .001
11 467 | 913 | TVT | BAT | .436 | 1568 | .015 ‘\
12 A37 | 011 | 770 7 553 | 320 | .144 | 012 ¢ N
i3 411 | 009 | Te3 [ A42 | 207 | (123 | 010 N *
14 388 | 907 | 758 | (5321 206 | .125 | 009 \,
15 BET | 903 [ 733 | 523 ¢ 286 1 118 | 068
18 348 | 004 | 740 | 516 | .278 ) 112 | (A7 P M
17 331 | @02 | (745 | .00 | 271 [ 107 | 006 A\ | 3
128 810 | 801 | 741 | 503 | .264 | (103 | 008 R
19 801 b 900 | 738 1 408 | 250 | 000 | 005 &
20 | .28% | 00 | 736G | .498 | 254 | 096 | .005 Q)
22 265 | BOT 1 7E0 b 4841 245 ] 060 | 004 /
24 240 | BG6 | 726 | 47T [ 238 | 086 1 004
26 220 | 894 | 723 | 471 | 232 | o2 L0034 N
28 214 | 893 | 718 | 466 | .227 | 070 | _GOS)W
30 201 ;392 | 716 | .462 | 223 | 077 | .B g
60 .106 | B85 | .606 | 430 | .184 | 061 |
@ 877 ) 675 0 .400 | 160 | (048N 661
b AN
™y
ho=2 N
Iz Eya —— .
1 1.5 2, 251 3 4 5 8 7 8
2 090 | 975 .957“\?32 901 | 865 [ .79 4 680 | 577 | 475 [ w70
4 000 | 85T | BOLN\BI0 | .85 | 540 | .266 | 085 | .024 | (004 | 00K
8 785 | 041 ‘s.sg /.095 | 498 | 305 | 068 | 007
7 .7z | o34 \égu 648 | 431 | .235 | 035 | .004
I3 634 | 920y . JB1L | 379 | 187 | 021 | 001
9 641 | G24F1\TOE | 5V0 | 338 | (152 013
10 402 | .eB8aN 779 | .552 | 306 | (127 0w
11 567 ‘9‘16' 767 | 528 | 278 ] .108 | 006
12 530 (412 | 756 | .s0% | 254 | .0g2 | .005
13 084 NG00 | 746 | 401 | 237 | 082 | 1003
14 1§.§ 807 | 73R | 476 | 223 | 074 | 002
15 A 904 | 730 | 463 ] 211 | .066 | 002
16 ‘yss 002 | (723 | 42 | (201 { 060 | .o0l
17 JIN\218 | 900 | 717 | 442 | ‘183 | 035 | 00
B\ 401 | 898 ¢ .T11 | .433 | 185 | 051 | w0l
IS 8R4 | 806 | 706 | .424 | (177 | Jpas i ool
y sgtr 360 1 895 1 701 | 417 | (170 ] 045 | 601
] 342 | 893 | 693 | 404 | (160 | 040 | 001
24 LBL% | LBDO | 686 | 304 | 151 | 036
) 208 | 888 | 680 | 385 ! 144 | 024
23 280 | 886G | .675 | .377 | .138 | .03l
30 264 | BR5 | G700 | .Av6 | .134 | .020
60 142 | OBF3 [ .B3Y | L824 | (102 | Q1B
@ 88C | .60t | 299 | 078 ! (011
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TABLE I. TaBLs Efq AND THE COERESPONDING VALUES QF P11 (continued)

fi =3
fa Flpm ®
1 i.5 2 2.5 3 4 5 8 7 8
2 093 | 077 | 961 | 0% | B11 | .878 | .800 | 709 812 | 515 | 421
4 | 926 | 959 | 907 | 818 605 | K52 | 278 | 100 | 0% 005 | 001
B | -B30 | .943 | 830 | .60l | 486 | (200 | 050 | 006
7 T84} 036 | 825 | 638 | 403 | 210 { (025 | .02
8 740 1 920 | 803 | 500 | 247 ] 358! ola
@ 700 | 823 | V83 | .550 | .299 | ‘120 | pDa
10 663 | 918 [ 765 { 517 | .261 | 004 | 004 'S
11 629 | 013 | 740 | 487 | 231 | 075 | D02 ¢\
12 508 | 909 | 735 [ .4A3 082 | 0oL oy
13 570 | 006 | 723 | 441 | (isé [ ‘051 | o0l \
14 S44 | 902 | 711 | 422 | 170 { (044 { g0l e
15 620 1 809 | 701 { .406 | .156 | 033 | _peL # N4
18 498 [ 896 | 692 | 391 { .45 S
17 478 | B3 | 883 | 278 | 135 | oo AN
18 450 | BBl | 676 | 367 | .126 | (026 L
18 442 ;| 889 | 880 | 356 | .119 | .o@3 N\
20 428 | 887 | 662 | M7 112 | 021 )
22 396 | 883 | a51 [ 331 | .10z | 007
24 37L | 88O | @41 | 318 | 094 | .015
26 | 349 | 877 | 633 | 307 | 087 | ‘o13 N
8 320 | .875 | .825 ) (297 { 081 | .0i2 4%¢
30 311 | 872 .619 | 289 | [077 | .01l -
a0 171 | 856 | .571 | 233 | 050 | .005 | N
@ 836 | .519 ] .182 0| .002 [ AN
),’“
h =4 oy
A §En N\
1 .01
1 1.5 2 N\2.5 3 4 5 (i 7 8
2 995 | 973 | 962 915 | 884 | .810 | .724 | .31 | .538 | .444
4 631 | (060 | loag | g2 700 | .657 | 280 | 102 | .027 | .05 | (601
6 B39 | 043 | s4B\685 | 475 | 277 | 053 [ 005
T | 818 936 | #21N624 | 389 | 11 [ (18
B 778 | D28 | £7H@ | L6714 .322 | .138 | 01
9 741 | 822 LNzt (526 | .280 | _0os 1 003
16| 708 ; 9154/ 752 | 487 | 227 [ 075 | 002
11 G73 OrINI™ 738 | 453 | .105 | 055 | 001
12 643 «Qgﬁ T8 1 424 | 1689 | (42 [ 003
13 BI6 1680 | oo | 398 | (148 | 034
id G00/1NE97 | as7 | 378 | 131 | 028
15 53\ 893 | 674 | .3s7 | 117 | .022
16 | & 800 [ 662 340 | 106 [ .013
17 1a%2 886 | 652 | 825 ) .006 | 0I5
18 E04 | 883 | 642 [ 32} .088 | 013
19078486 | 880 | .633 | .30t | .081 | .0Il
w20 3 470 | B7RP 625 | (200 ] 075 f .010
82| 440 | 873 | 611 | .272 ] .066 | .008
N2 | a3 | o0 | oos | (257 | l059 | 008
26 380 [ 865 | .588 [ .244 | .053 | .0D5
28 368 | .BG2 | 578 | .234 | .048 b
30 349 | 860 | 570 | 225 { .044
a0 196 | .B37 | .500 | .165 | .024 | 0D
EY JR10 | .443 [ 115 | 011
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TABLE I. Tasrn or B4 AND THE CORBESPONDING VALURS OF Py (continted)

A =5
S B
1 1.5 2 2.5 3 4 5 6 7 8
2 | 996 | 9780 964 { .944 | 018 | 888 | BT | 733 | 842 | .540 | .45%
4 | 0517 961 | 916 | .824 | 762 | .539 | 282 | 103 | [02F | (005 | [0D1
6 | B7D | 043 | BAR ! 670 | .466 | 266 | D48 | .004
7 | 342 | 835 | .81 | (614 | 304 | 1177 014
8| .806 | 028 | 790 | .556 | .201 | .121 | .007
2 | M1t 9 764 | 505 | 245 | 083 | .003
W | 738 | 014 | 720 | 461 | 201 | 038 | .00
1| 707 | eo8 | 7181 424 | 1188 042
12 |,.879 | 903 | 690 | 301 | .141 | .0m1
i3 1 .652 | 807 | 681 | 263 { .120 | .023
14 | .626 | .892 | 864 | .239 | .104 | .0I%
15 | .803 | .888 | 640 [ .318 | ‘090 | .o14
18 | 581 { .BR3 | .636 | .209 | 079 | .0L1
17 | .381 | 880 | .62¢ | .283 | .0¥1 | .009
18 | 541 | .876 | .612 | .269 | .063 | .007 \
19 | 523 | .873 | 602 | 256 | 057 { .006 )
20 | 506 | 870 | (592 | .245 | (052 | .00
22 | 475 | .BAd | 575 | 225 | .044 | 004 O
24 | 448 | 859 | .560 | 210 | .037 | .003 e \d
26 | 423 | .855 | 547 | .196 | 033 | .002 {
28 | .401 | .851 | .536 | .185 | 026 | .002 A\ N
30 | .381 | .8aT | 526 | .176 | 026 | .002 ’
60 | .218 | 8191 452 | 118 | .011 o\
@ T84 | 3731 070 | 004 \J
&
ho=3 NN
Iz Ry A
1 1.5 a{ V2.5 3 4 5 8 7 a
2§ .97 | 978 | 964 |r945 | 920 | 801 | .821 | 730 | .ec0 | 558 | 463
4 | 858 | 062 | 910G N825 | 704 | 560 | 983 [ 104 | .07 | 005 | 00t
8 804 | 944 | 847 [V675 ) 450 | 258 | D44 | 003
7 860 | 935 ) 815 | .605 | 362 | 166 | .011
8 | .27 | .92v po784'| (543 | 285 | (100 | [poa
9o w5 | o i/ rs6 | 488 | 226 | 071 | (03
10 1 784 ! 9I2NMTTI0 | 441 | 181 | 048 | (oDl
11 | .734 | #0054 706 [ 400 | .147 | 033
12 [ 707 [ °& 683 | .86a | .120 | 023
i3 6817\R93 | 663 | 334 | (100 | 017
14 | .656M~/.888 | 645 | .308 | .084 | .013
15 6335 882 | 628 | 286 | 071 | .000
16 |\B12 | 878 | 612 | 266 | 061 | .007
17 P30l | 873 | 598 | 240 | ps3 |l ons
188572 | 880 | .585 | 233 | (046 | .n04
mJ9 1 554 | 865 | 573 | 220 1 .041 | (003
[ 537 | 862 { 562 | 208 | (036 | .003
No22 | 506 | 835 | 3a2 (188 | 059 | oos
24 | 478 | 859 : 324 [ 172 | 024 | 001
26 | 453 | 844 | 510 | .159 | .020 | .gOl
28 | 430 | .39 | 497 | 147 | 017 | ‘00l
30 | 410 | B35 | 486 | 138 | 015 | 001
60 | .238 | .801 | .4Q1 | .08L | 008
@ 955 | .811 | 642 | Lo01
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TABLE 1. TanLE o¥ E%.q; AND THE CORREEFONDING PALUES OF Pry {continued)

h=7
] Foa #
1 1.5 2 2.5 3 14 & 6 T 8
2 | 997 | 070 | 965 | 046 922 | 593 | .824 | 743 | 655 | 508 .475
4 1 o963 | 9621 912 | (826 | 705 | (561 | 283 | 1p4 | 097 ,005 | 001
B | 8067 844 | 845 | 871 | 452 | 25l | .gil | 003
7 ar5 b 035 | 812 | 598 | 351 | 138 | 600
8 844 | 926 | 779 | .532 | 272 | (100 | [oo%
g 814 | 918 [ 740 | a7i | 211 | 0634 ‘o2
10 785 | 0106 | 720 | 423 | 166 | (04l | 001 X
11 757 | 803 | 694 | 370 [ .131 | .goF AN
12 750 | .806 | 670 | 342 | (105 | 018 . .
13 705 | 889 | 848 1 310 | 085 | o3 N
14 681 3 | .627 | .283 | 069 | .p00 g
15 650 | 878 | 803 | 250 | ‘ox7 | ooy N
16 633 | 872 { 501 | 238 [ .045 | 004 <M
17 818 | 868 | 575 | 220 | o4t | (00
18 508 | 863 | 561 | 205 | .035 | .002 ¢*¢
19 581 | 859 | 648 { _191 | [030 | .o¢z M\N
20 | .564 | 854 | 535 | 179 { .028 | ‘po2 <D
22 533 | .847 | 613 | .159 | 020 | o0l
24 505 | 840 [ .494 | (143 | .016 [ 001 \
26 479 | .834 | 477 | (130 | loi3 ~NJ
28 456 | (820 | 4683 | 119 | .o11 {N
30 435 | .B24 | 450 | (110 &
46 256 | .788 | .355 | .056 | .002 o
© 729 | (256 | 024 AN
ol
A=38 N

E A g

. s
s T 75 e [2sl 3 | 25 o |51 s
2 f 097 1 970 | 965 [N\ 046 | .023 | o4 | 526 | 746 | 650 | .560 | 481
4 1 987 | 062 | 012 x\.826 JT05 4 .562 | 294 | (104 | co27 | (005 | 001
6 | .015 | .914 K‘g 688 [ 447 | 246 { .030 | 003
7 | 587 | loma \% 502 | ‘ma@ | 151 ) 007
8 858 | 025\ .75 | .622 | .261 | 083 [ .004
9 | .B29 ; 917 |».743 | .461 | .199 | T056
10 | 802 | mpsv 712 | 408 | (153 | 035
11 775 Ihnapd | (6s4 ] .63 | (115 { .022
12 750 4 %803 | 653 | .324 [ 082 | 014
13 TIGNMBEE | B34 | 200 | 073
14 03 40 880 | 612 | .261 | 058 | .00




=1
&
fr o205 -
1 15| 2 bz2s| a | a A 8 7 8
2 | D3| 82 | a3 | 643 | 517 | .8%5 | 200 | os3 i .09 | 008 | oo
4 | .B58 | H05 | 631 | 428 | 247 | 1w | ois | o0t
& | LBO0 | 777 | 570 | 343 | 164 | ‘oel | 004
7 | 444 | 768 ] 852 | (319 | (144 | (050 | 002
B | 399 1 7BL{ 537 | .02 | 126 | ‘o4l | lon2
07 362 | .TAB | 526 | 288 | 119 | 03 | .00l
W | 332 | 751 | 517 | 278 ) 111 .6a2 | o0l 2\
Ir | 806 | 747 | 510 | 280 | 103 | le2d | (o0l .
12 | 284 | 724 | 504 | 262 | (100 | 627 | o0l )
13 | 264 | (741 | 409 | 256 | 006 | o023 | CAod g W
4| 247 { 739 { 404 | (251 083 | 024 ! pol PENY
5 ] 232 0 737 ¢ .490 | 247 | Loon | .03 <)
16 | 219 | 7351 487 | 243 | 087 | 022 H
7| 207 b 734 481 | (24D | 085 | 027 ¢ K/
18 | (197 | 73z b ol4m1 | 2a7 | Jgmd | 620 ~\
I5 | 187 [ 73l .78 | 235 | 082 | [o2n )
20 | .179 | 730 ¢ 477 | .233 | loR1 | .m19
22 i64 | 728 | 473 | 229 | 078 | [ois
24 151 | 726 | 470 | 228 | ‘ove | nis \\
26 | 140 | 725 | 467 ¢ 223 | 6751 017 ¥ 4
28 | 130 | 723 | 485 | ‘2211 o973 01T ~A\ W
a0 122 | 722 | 463 | =10 lov2 | [0l 'S
60 | 082 | 715 | 450 | 205 | 085 | 011 | AN
@ 707 | 437 | 188 | l0as | Lol | [
’Q' g
R ‘, .
hH =2 < ,’:'
) &
£ | B — e
1 15| 20N o8 | 4 | s 6 | 7 | 8
2 | 050§ 881 | 803 ) 04 595 | 484 | 2861 148 [ 084 | 024+ O0%
4 | 776 | 824 | 661 Y480 | 272 | 133! loz0 | oo
6 | 832 | '7ho | (570 [Ng10 | 135 | 052 | ooz
7 | .BTE | TF7 | .58N| .304 | 124 | 08T [ 001
8 | .527 | 767 | L3R0J| .277 | (104 | 027 | lood
9 486 | 750, [{M13 | 257 | 090 | ‘uze
16 | 451 | .752M\ %408 | 241 | ‘gm0 | (017
11 420 | g4k Pese | 228 | o7z | lols
12 | 393 | @43 4veé | 217 | 666 | 013
IR ] 360 bNFRT | 468 | 208 | (061 | 011
14 1 o ER T34 | 4611 201 | 05T | 010
13 | 3087720 | 454 [ 195§ 054 | 009
it | «JuzM Tey o448 | (189 | (051 | (o0
17 |a297 | 725 | 443 | 184 | 048 | 003
18, . Na283 | 722 | 439 | (180 | 046 | D07
1% T270 [o720 | 485 | 177 | ‘o4 | 007
720N 259 | 718 | 4811 173 | naz i 006
Xg% 238 | 715 ] 425 | (188 | (040 | 006
4 | 2210 712 ] 420 | 163 [ [03% | .05
25 206 [ 710 | (415 | (150 | 037 | ‘00OB
o8 ‘ (192 | 708 | 411 155 | p35 | lens
20 | 181 | 706 1 468 | (153 | 034 | .004
60 | 095 [ 692 | 384 | 184 [ Jo27 | (003
o | 678 | 362 | 117 | 02t | op2




TABLE IL. TaBLE OF E%.s AND THE CORRESPONDING VAL

193

UBH OF Py (continued)

fi=3
f By
1 1.5 | 2 3.5 3 4 5 6 7 8
2 | 966 | .BR& | BIT ] 726 | .624 | .510 | 394 | 177 | .084 5| .03
4 | 832 | 830 [ 670 | 488 | 278 | (130 | 020 | .00l 030
6 | 704 | 791 | 574 | 326 | (139 | ‘044 | ‘ooz
¥ | .651 | .7786 | 340 | =283 { .106 | .028 N\
8 | 804 | .764 | .513 | 251 | D84 | .03
8 | 563 | 754 | 401 | 226 | .068 | pi3
1o | 597 | 745 | .4v2 | 208 | 057 | 010 O\
11 405 | 738 | .457 | 1001 049 | .poR { W
12 468 | 731 | 444 | 173 | 043 | 008 NS ©
13 | 440 | 726 | .433 | (167 | 038 | D05 \.
14 | 418 | 721 | 422 | (158 | .035 { .002 %
15 | .397 | T8 | 414 .151 | .032 | .o '
16 | 878 | .712 | 408 | ‘144 | 020 ] .003 N
17 | 361 | .709 i 300 | 130 | 097 | .o003 ny
i8 | .345 | .705 | .393 | (134 | 025 | ‘002 <
19 | 331 | 702 | 388 | (130 | 024 | .002
26 1 .217 | .7o0 | (383 | 126 | 092 | ooz }
22 | 204 { .695 | 375 | .110 | 020 | 002
24 | .273 | 691 | .367 | .11 | .019 | .001 \
26 | 255 { .68¥ | .361} .110 | .017 | 001 MM
23 | 240 | 084 | .356 | (106 | .016 | .0D1 4
20 | .226 | 68z | (352 | (103 | 015 | .0Cd -~
60 j .121 | .B62 | .326 | .083 | .01G | .00I X
<o 642 | (280 | .067 | 007 A\
"
fo=4
o E% N ¢
] N
* 1 1.5 1 24]%\e5 3 4 5 [ 7 3
2 | 975 | .s92 | g4 | ¢7ag>) 640 ] 557 | 345 | 195 | 007 | .04z | 017
4 | 865 | 833 | .p784 M71 | 279 | 130 | .020 | .01
& 751 L7a1 il 314 128 ) 038 001
T | 702 | rrd | Se20 ) .285 | 092 | 022 i
5 _B57 L7600 [ 497 | 220 069 [ 013
2 | 618 [ T48p 71 | 201 | 064 | .Q08
10 . HE2 JTERN 440 ) 179 043 { 006
il | .550 | Y290 .430 | (161 | .035 1 .004
12 | (521 |/9qer | 414 | 148 | 030 | .003
13 A4 {714 | 401 | 136 | D25 | 002
14 | 47t V708 | (389 | 137 | 022 | .002
15 Xg o702 | (378 | .110 | 018 | .002
16 J&a 607 | 365 .112 | .017 { .001
17 o[\ 411 L6063 861 106 | 016 | .00l
18, 4%.304 } .69 | .352¢ | .101 | .014 1 .001
AN 370 | e85 | (347 | .007 | 013 ] .001
#N\20/ | .364 | 881 | .341 | 003 | .012 | .001
Yoz | 33g | .675 | .331 | .086 | .010 | .001
24 LBl6 LBTD 322 | 080 008
26 | .207 | 665 | .315 | .076 | .008
a8 276 | 661 | .309 | .072 | .008
30 264 | LB5S | 303 | .06B | OOT
60 | .144 | .632 | .265 | .040 | .00
e 804 | 227 | .036 | .002
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TABLE IT, Tanik oF E%.q AND THE CORRESPONDING YALTURE OF Pyy (continued)

HA=235
&
S E%e
b 1.5 2 2.5 3 4 5 8 7 8
2 | 980 | .89 | .28 | 745 | 649 | .5490 | .350 | 207 | 1081 .048 | .01
4 | .B87 | .835 | .875 | .473 | .28@ | 1138 { .820 | .01 ~
6 | 7851 700 | 561 | (304 | (119 | 033 | 801
7 | 739 vz | .519 | 251 1 lou2  o1s
& | .607 | .756 | .483 | 211 | 038 | 010 N\
9 | .65Q | .743 1 .454 | .1RL | .044 | 006 AN
100 | w625 | w31 | 429 | lass | 033 | loo4 . 4
11 | 503 | .720 | 408 | (140 | (026 | .002 )
12 | 364 | .v11 | o300 | (125 | 021 | 002 s M
13 | 338 | 703 | .374 | .113 | 017 | 0oL AN
14 § 514§ .695 | .360 | .103 | .015 | .001 R
15 | 492 | 680 | 348 | (005 | .02 | lo0l A
16 471 | .B8F | .838 | .0B8 | .011 | .001 <
17 | ‘452 [ l67s | 228 083 | 00w |- 2\
18 | 435 | 673 | .320 | 078 | ‘068 \
19 | 419 | 8% | 312 | .073 | (007
20 | .404 | 6684 | 305 .0G9 | .00T \
22 | 377 | .656 | .294 | .063 | .006 1\
24 | B53 | .650 | .284 | .058 | 005 244
26 | .332 | 644 | .275 | 064 | .004 A"S
28 | (314 | 640 | .268 | 050 | 004 'S
30 | -207 | .635 | (262 | 048 | 003 A
60 | .185{ .604 | .219 | 081 | o001 {
= A6 | 177 | 019 [ (001 | 8
1 =6 A} ’
"4 P
] B
1 {1548 | 25| 3 4 5 6 7 8
2 | .983 | .805 | .B3N| .740 | .656 | .557 | .36S | .216 [ .112 | .0s2 | .o22
4 | 902 | 8384 .8 473 | .280 | .138 | .010 | 001
& 811 | 7BOANSGS6 | 206 | 113 | 030 | .00
7 1,768 | 768 %2510 { 230 | 071 | .0i5
B | .720 | & 5\31 472 | (198 | .03l | loos
9 | 692 |£%387) 440 | 165 | 037 | .005
10 | (6504725 { 412 | 342 | 027 | 003
11 | 628 A %713 ] 389 | (123 | .020 | .002
12 gﬁb 702 | 289 | .108 | .01G | .00L
13 74 | 693 | .35¢ | .096 | 012 | ‘oL
14 AN\B50 | 685 | (236 | .086 | .010 | .00L
154\ 527 1 .77 | .823 | .078 | .008
16Ny .507 | .669 | .311 ] .071 | .007
,}g 488 | 663 1 .301 | .063 | .006
470 1 657 { .20t | 061 | .005
N9 | (454 | .652 | .283 { .058 | .004
/20 | 438 | .648 | .27¢ { .053 | .004
32 | 410 | .630 | 262 { ‘047 | 003
24 | 385 | 632 | 252 | (043 | o003
28 | .363 | .825 [ 242 [ .049 | .002
28 | .3¢4 | .820 | .23¢ | 036 | (003
306 | .326 | 815 | 228 | 033 | .002
60 | .184¢ | 576 | .181 | 019 | .00l
o 632 | 138 | .010
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TABLE II. TAsLE OF E%.« ANB THE CORRSSFONDING VALUES OF Py (contjnused)

f=T

E Eo
1 1.5 | 2 251 3 4 5 6 ¥ 8
2 0BG | 896 .Ba% | 753 | . B63 ] 374 | 222 1174 085 | 623
4 | 014 | .BAT | 678 | 474 | .280 [ .13 | .010 | .001
6 1 .831 | .788 | .662 | .289 | .108 | .028 | .00%
7 | .81 | .7e7 | 508 | 230 | .G6& | .013 p
8 | .75¢ | 749 | 462 | 187 | .048 | 007 N\
o | 719 | 733 | .427 | .154 | .03% | .004
M | .687 | .719 | .808 | .120 | .022 | .Q02 A
11 857 | .706 | .373 | .I10 { .016 | .00 2 AN
12 | .630 | .695 | .351 .094 | 012 ; .001 ~
13 | .60+ | .e3¢ | .332 | [0s2 | 000 \
14 | .680 | .675 | .316 | .073 | .007 « N
15 | .558 | .667 | .301 | .065 | .0OB i
16 | .538 | .659 | .289 | .08 | .005 <N
17 | .518 | .652 | .277 | .053 | .0D4
18 | .501 | .645 | .267 | .048 | 003 ?
19 484 | 639 | 258 | 044 | 003 A\ N
20 | 468 [ .634 | 250 | .041 | GD2 )
22 ] .439 | .624 | 286 | .036 | .0C2
24 | 414 | 815 | .224 | .caz | .01
26 { .301 | 607 | .215 | .028 | .00 A\
28 | .87L | .601 | .206 | .026| .00L JEPS
30 § .353 | .696 | .199 | .023 | .00l { &
80 1 .202 | .550 | 180 [ .0M2 N\
© 408 | (105 | .005 AN\
S
Hh =8 Q°
. 2 &
Ao T s ehes| 8 | &« | s | 6| 7 {8
2 | 987 | .807 | .835 | 4% 884 | .667 | .380 | .227 | .121 | .067 | .024
4 ‘024 | %38 | 8784 N\474 | 279 | 187 ) 019} 001
6 | 847 | .87 .6;5\\,284 .03 | .026 [ .001
7 | IBID | 765 | 497N 222 | (084 | 012
8 | 775 | 746 j£4pd | 178 | 041 | 006
9 | .742 | 7304N\417 | 144 | .028 | .003
10 | 711 | JEl45.386 [ .119 | .08 ) .00%
11 | .68z | .FOn| .259 | .06 | 013 | 001
12 GhS | BEE | 336 | .084 | .009
i3 | .630 (7877 | .316 | .072 | .00T
14 £07 V666 | .208 | .062 | .005
15 gi" 857 | (283 | .055 | .004
16 |56 | .648 | .269 ; .048 | 003
17 |\N545 | .e41 | .257 [ .043 | .003
18 R48.527 | (634 | .247 [ 089 | .002
Ao 510 | .627 | .237 | 035 { .002
20 | o405 | .e20 | .228 | .032 | 001
\2Z | 466 | .609 | .213 | 027 | .001
fz¢ | 440 | .00 | .201 | .02¢ | 001
26 | a17 | .591 | .19% | .021 | 001
28 | 3096 | .584 | .182 | 019
30 [ 377 | .578 | 176 017
60 | 219 | .527 | .125 ] 008
@ 466 | .osl | .003
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